
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

California Center for Population Research 
On-Line Working Paper Series 

 

Explaining the Decline of Child 
Mortality in 44 Developing 
Countries: A Bayesian Extension of 
Oaxaca Decomposition for 
Probit Random Effects Models 

  

Antonio Pedro Ramos, Martiniano Jose Flores, Leiwen Gao, 
Patrick Heuveline, and Robert Weiss 
  

PWP-CCPR-2020-004 

September 1, 2020  



Explaining the Decline of Child Mortality in 44 Developing

Countries: A Bayesian Extension of Oaxaca Decomposition for

Probit Random Effects Models

Antonio Pedro Ramos ∗1,2, Martiniano Jose Flores3, Leiwen Gao1, Patrick Heuveline4,

and Robert Weiss1

1Department of Biostatistics, Fielding School of Public Health, UCLA, Los Angeles,

California, USA

2 California Center for Population Research, UCLA, Los Angeles, California, USA

3Department of General Internal Medicine, UCLA David Geffen School of Medicine,

Los Angeles, CA, 90095

4Department of Sociology and Califonia Center for Population Research, Los Angeles,

CA, 90095

September 9, 2019



Abstract

We develop a novel extension of Oaxaca decomposition methods for non-linear random effects

models to investigate the decline of infant mortality in 42 low and middle income countries. We

analyze micro data from 84 Demographic and Health Surveys where surveys from two time periods

were available. We predict mortality at the birth level with a Bayesian hierarchical probit regression

models. We use the predictions from these models as input for our new Oaxaca method. Our novel

approach accounts for uncertainty in the decompostion results, and allows for point estimates, stan-

dard deviations, and posterior distributions of the Oaxaca conclusions. Further, our approach does

not depend on assumptions such as matched samples between two surveys and and marginalizes ran-

dom effects for variables that are not comparable between surveys, such as location effects. For most

countries, declines in infant mortality are due to changes in the regression coefficients, not on covari-

ate distributions. However, our decomposition results show that there is considerable heterogeneity

between countries and uncertainty on which variable matter the most within countries.

∗Contact Author: tomramos@ucla.edu
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1 Introduction

Sustainable Development Goals (SDGs) target three for 2030 call for reduction of early-life mor-

tality (ELM). In particular, it calls for all countries to reduce their neonatal mortality to no more

than 12 deaths per 1,000 live births and their under-5 mortality to no more than 25 deaths per 1,000

live births (Economic and Commision, 2016). Despite a 44% reduction in child mortality globally

from 2000 to 2015, there were still an estimated 5.9 million child deaths in 2015 with a global child

mortality rate of 43 deaths per 1,000 live births https://www.who.int/news-room/fact-sheets/

detail/children-reducing-mortality. Similarly, the neonatal mortality rate declined from 31

deaths per 1,000 live births in 2000 to 19 deaths per 1,000 live births in 2015, still well above SDG

goal 3. Progress toward the SDGs has varied widely from country to country (Rajaratnam et al.,

2010). Many countries, particularly in sub-Saharan Africa and Southeast Asia still have high infant

mortality rates, some as high as 84 deaths per 1,000 live births. To assess whether declines in ELM

can be expected to continue and the corresponding SDG-3 targets to be reached requires a better

understanding of the determinants of these declines.

Infant and child survival is known to be associated with several parental characteristics, e.g.,

whether a child’s mother has completed her primary education (Desai and Alva, 1998) (Kamal, 2012).

Were recent declines to be driven by increases in the proportion of mothers having completed primary

school, for instance, future declines might depend on whether future educational gains can be expected

or whether this proportion is now approaching 100%. Similarly, ELM has been shown to be associated

with younger maternal age at birth (Finlay et al., 2011) and rural parental residence (Van de Poel

et al., 2009) (Sastry, 1997). Using data at the national level, Bishai et al. (2016) find that most of

the decline of the child mortality was due to improvements in the societal coverage of a broad array

of health system, social, economic and environmental determinants of child health. Likewise Van de

Poel et al. (2009) use micro data from Sub-Saharan Africa and found that most of the gap in infant

mortality between rural and urban populations can be explained by rural household disadvantage

in the distribution of risk factors relative to urban households. A similar conclusion as reached by

Saikia et al. (2013) that found that most of the rural-urban gap in child mortality in India can be
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explained by rural households disadvantage in the distribution of factors. However, to the best of our

knowledge, no papers use micro data to analyze the decline of child mortality for a broad range of

Low and Middle Income Countries (LMIC).

To our knowledge, no study to date has undertaken a systematic investigation of the role of distri-

butional changes in parental characteristics in recent ELM across Low and Middle Income Countries

(LMIC). This may be due to the methodological challenges presented by analyzing individual-level

data to determine how much of the difference in average mortality between two populations is due

to differences in the distribution of covariates of survival versus differences in the covariate-survival

relationship. Decomposition methods have been developed to separate the contribution of differences

in distribution (typically referred to as populations’ “endowment”) and differences in relationship

(typically referred to as “propensities”). Kitagawa (1955) introduced a “categorical” form of decom-

position for the difference between two aggregate rates using population distribution across groups

(categories). Oaxaca (1973) introduced a “statistical” form of decomposition using linear regression

models. A number of methodological developments have built on these two seminal contributions,

but as discussed in the next section, none of these is fully adapted to take advantage of the wealth

of microdata on parental, birth and geographic characteristics that are available in demographic and

health surveys and that can used to estimate mortality risk at the individual level using non-linear

random effects models.

In this paper, we present new methods to undertake such a decomposition using predictions

for infant mortality risk from a non-linear model Bayesian hierarchical random effects model. We

then apply these methods to data from 44 LMIC for which micro data is available using. Bayesian

hierarchical random effects model with geographic location level random effects. We include countries

with a variety of levels of infant mortality and estimate mortality risk using observable parental,

individual and geographic characteristics that available in a comparable fashion for 44 developing

countries using microdata from Demographic and Health Surveys (DHS).

We show that most of the decline in ELM mortality in LMIC in recent decades has been due to

changes in propensities (i.e., changes in the effects of covariates) rather than changes in endowments

(i.e., distributional changes. However, there is large heterogeneity between and within countries.
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When we look at the effects of the individual covariates in the coefficient by coefficient decomposition

within countries, it is difficult to assess which variable mattered the most because of large uncertainty

in our estimates. Still, decline in child mortality seems to be associated mostly with changes in the

intercept term over time, which suggests that the decline has also been associated with general im-

provements in health, beyond the covariates that were included in the models. Our results suggest that

there is still much room for decline in ELM and that ELM-related SDG 3 might be attainable faster

if improvements in health were accompanied by changes in the distribution of important covariates of

ELM, such as maternal education and age at birth.

Our paper is organized as follows. Section 2 introduce our new decomposition methods outlining is

innovation vis-a-vis current methods.Section 3 introduces the data used in our analyses and describes

the statistical model used to estimate mortality risk. Section 4 reports on our empirical findings.

Section 5 discusses the methodological and policy implications of our findings.

2 Oaxaca Decomposition

Oaxaca Decomposition methods take two populations under consideration and fit separate re-

gression models to each population to estimate average response for each population. The average

difference between populations is decomposed into two parts, one that is due to covariate distribu-

tion effects (the distribution of the X’s or of the parental, birth and geographic characteristics) and

another that is due to differences in the covariate-response relationship (regression coefficients which

are the effects of those characteristics on infant mortality). In multivariate models, one can further

decompose overall effects into individual X and β effects.

In its original formulation, Oaxaca decomposition methods make use of the fact that in linear

models, the average estimated response in a population is equal to the response at the average covari-

ate value in the population. However, to take advantage of the parental, individual, and geographic

information available in surveys, mortality risk need to be estimated estimated individual levels mod-

els. In these models, because of their non-linearity, the average estimated response is not equal to

the response at the average covariate value. Overcoming this limitation, Fairlie (2005) developed a
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Oaxaca decomposition for logit and probit models, assuming matched samples between two popula-

tion and fitting a model to the pooled data. Bauer and Sinning (2008) built upon this approach and

extended the Oaxaca decomposition to a more general class of non-linear models. Van de Poel et al.

(2009) extended Oaxaca decompositions to binary response models with random effects for geographic

locations (community effects). Van de Poel et al. (2009) also treat random effects as regular regression

coefficients for their decomposition procedure but they do not provide uncertainty estimates for their

decomposition results.

Despite all these efforts a number of important methodological gaps remain in the application of

Oaxaca decomposition methods to the decline in ELM. While it is possible to further decompose the

covariate effect into the effects of individual covariates, to our knowledge similar decompositions do

not exist for the effect of individual coefficients. Moreover, existing methods require matched samples

between the two populations under consideration. This is not generally a reasonable assumption to

make when the populations are very different, such as rural versus urban populations, or wealthy

versus poor populations. Another undesirable consequence of the assumption of matched samples

is that when the samples are of unequal size, it is necessary to over sample the smaller population,

which can bias the results.

A related issue arises when we have models with random effects. The method proposed by Van de

Poel et al. (2009) has random effects for location, but this assumes that locations are the same in the

two populations. While location effects can be of scientific interest, often times we are interested in

the unconditional effect of the covariates on ELM, which requires us to marginalize out the random

effects.

Most importantly, none of the previous work propagates uncertainty from the estimation of the

mortality risk stage to the decomposition analysis stage. This is important because we need to know

what decompositions results are statistically significant.

To understand how the outcomes differ between two different surveys, a standard approach is to

decompose the difference into two parts using the Oaxaca decomposition. One part is due to the

differences in the distribution of covariates and the second is due to the differences in the regression

coefficients between two surveys.
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2.1 Overall Oaxaca Deomposition

Suppose for subject i in survey k, yik were a continuous outcome variable defined on the real line

with xik as a covariate vector, and we modeled yik using a linear regression

yik = x′ikβk + εik,

where βk is a vector of regression coefficients in survey k, and εik is a normal error term with

variance σ2
k. Letting β̂k be the least squares estimate for βk, the mean response in survey k is

ȳk = 1
Nk

∑Nk
i=1 x

′
ikβ̂k = x̄′kβ̂k. The decomposition for the difference in two surveys is

ȳ1 − ȳ2 = x̄′1β̂1 − x̄′2β̂2 (1)

= (x̄′1β̂1 − x̄′2β̂1)︸ ︷︷ ︸
X effect

+ (x̄′2β̂1 − x̄′2β̂2)︸ ︷︷ ︸
coefficient effect

. (2)

The first term in (2) represents the difference due to changes in the distribution of covariates, and

the second term represents the difference due to changes in the regression coefficients.

a similar decomposition exists for a general nonlinear model yik = F (xTikβk),

Ȳ1 − Ȳ2 =

N1∑
i=1

F
(
xTi1β1

)
N1

−
N2∑
i=1

F
(
xTi2β2

)
N2

(3)

=

[
N1∑
i=1

F
(
xTi1β1

)
N1

−
N2∑
i=1

F
(
xTi2β1

)
N2

]
︸ ︷︷ ︸

X effext

+

[
N2∑
i=1

F
(
xTi2β1

)
N2

−
N2∑
i=1

F
(
xTi2β2

)
N2

]
︸ ︷︷ ︸

coefficient effect

, (4)

As Fairlie (2005) notes, For a probit model, taking F to be the cumulative distribution function

(CDF) of a standard normal random variable, the left hand side of (3) is only approximately equal

to the right hand side, but the approximation is generally very close.

2.1.1 Overall Decomposition for the Probit Model with Random Effects

In the study, for each country, we want to decompose the difference in the estimated mortality rates

between surveys 1 and 2 into covariate effects and coefficient effects. However, the model (14) and (15)
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contains cluster random effects γjk. The number and location of clusters is not generally comparable

between surveys. Therefore, we base our decompositions on the marginal model by integrating out

the random effects. Let π̃ijk be the probability of death in the marginal model. Then

π̃ijk = P (yijk = 1|βk) (5)

= E (yijk|βk) (6)

= E [E[yijk|βk, γjk]] (7)

= Φ(xTijkβ̃k), (8)

where β̃k = βk√
1+σ2

k

and (7) follows from iterated expectation formulas. The proof of equation (8) is

provided in the appendix. Thus, the marginal model for the probability that yijk = 1 is still a probit

model with the regression coefficients multiplied by a correction factor of
√

1 + σ2
k.

Substituting (8) for F (·) in (4), the decomposition becomes

E [ȳ1 − ȳ2] ≈

 n1∑
j=1

Nj1∑
i=1

Φ
(
xTij1β̃1

)
N1

−
n2∑
j=1

Nj2∑
i=1

Φ
(
xTij2β̃1

)
N2


︸ ︷︷ ︸

X effect

+

 n2∑
j=1

Nj2∑
i=1

Φ
(
xTij2β̃1

)
N2

−
n2∑
j=1

Nj2∑
i=1

Φ
(
xTij2β̃2

)
N2


︸ ︷︷ ︸

beta effect

(9)

2.1.2 Coefficient By Coefficient Decomposition for the Probit model

Once we have the overall decomposition, it can be of interest to explore the effect of individual

regression coefficients on the overall decomposition. Suppose there are two covariates in the model

and an intercept term. Then xijk = (1, xijk1, xijk2)T and β̃k = (β̃k0, β̃k1, β̃k2)T . The overall beta

effect can be decomposed sequentially into the contributions of each coefficient or set of coefficients
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as follows,

Overall beta effect =

 n2∑
j=1

Nj2∑
i=1

Φ
(
xTij2β̃1

)
Nj2

−
n2∑
j=1

Nj2∑
i=1

Φ
(
xTij2β̃2

)
Nj2

 (10)

=

 n2∑
j=1

Nj2∑
i=1

Φ
(
β̃10 + xij21β̃11 + xij22β̃12

)
Nj2

−
n2∑
j=1

Nj2∑
i=1

Φ
(
β̃20 + xij21β̃11 + xij22β̃12

)
Nj2


︸ ︷︷ ︸

the effect of intercept

(11)

+

 n2∑
j=1

Nj2∑
i=1

Φ
(
β̃20 + xij21β̃11 + xij22β̃12

)
Nj2

−
n2∑
j=1

Nj2∑
i=1

Φ
(
β̃20 + xij21β̃21 + xij22β̃12

)
Nj2


︸ ︷︷ ︸

the effect of first coefficent

(12)

+

 n2∑
j=1

Nj2∑
i=1

Φ
(
β̃20 + xij21β̃21 + xij22β̃12

)
Nj2

−
n2∑
j=1

Nj2∑
i=1

Φ
(
β̃20 + xij21β̃21 + xij22β̃22

)
Nj2


︸ ︷︷ ︸

the effect of second coefficent

(13)

In the set of equations above, (11) is the portion of the decomposition that is due to differences

in the intercept where only βj10 in the first term is replaced by βj20 in the second term. Then we

keep the replacement of intercept in the first term of (12), and only replace βj11 by βj12 in the second

term. Similarly, the replacement of intercept and first coefficient is kept in the first term of (13), and

only βj21 is substituted by βj22 in the second term. As a result, (12) and (13) are the portions of the

decomposition that are due to change each of the regression coefficients individiually.

There are 7 covariates in our model, so to do the decomposition, we expand the three equations in

(11)-(13) to eight, substituting one coefficient (or set of coefficients for categorical variables) in each

equation. In general, the order in which we decompose the overall beta effect into the individual beta

effects will matter, and we HOW DID WE DO THIS AGAIN
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2.1.3 Accounting for Uncertainty When Evaluating Declines

We estimate mortality risk for subjects with a Bayesian hierarchical probit random effects regres-

sion models in (15) using Markov chain Monte Carlo (MCMC). For each iteration ` = 1, . . . , L of the

MCMC, we have an estimate π
(`)
ijk of πijk for all births which we use to calculate the decomposition

in (8) for all L iterations. This gives us a posterior distribution for the decomposition results, which

provides a straightforward way to get point and the uncertainty estimates. This allows us to determine

which of the declines were significantly different between surveys 1 and 2 for each country.

3 Data and Statistical Model

3.1 Data

To investigate the decline in the incidence of early life mortality over time for infants under 1

year old, we assembled data using two waves of the Demographic and Health Surveys (DHS) from 42

countries. The two waves are between 10 and 20 years apart. For each survey, we include births from

mothers aged 15 - 45 years old. We analyze births that occurred between one and five years before

the survey to make sure each child was on the study long enough to experience a potential mortality

event and to minimize censoring issues. Table 1 shows the survey year, sample size and empirical

mortality rate in each wave for all 42 countries. We observe declines in mortality in all countries

except Cameroon, which stayed the same from 1991 – 2011.

To estimate the individual mortality risk in each survey within each country, we use a probit

model including covariates that have been shown to have an association with child mortality, and are

available in all of the surveys and comparable across countries and surveys. We include maternal age

in years, mother’s education in years, sex of the infant, birth order, place of residence (rural versus

urban), and a relative wealth score that indicates how wealthy each individual is. Because wealth is

calculated at the household level, we calculate the relative wealth score by taking the percentage of

households with wealth less than or equal to that of the household in which the mother for the birth

resides in each survey for each country. We also use cluster to indicate the location of household.
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3.2 Bayesian Hierarchical Model for Infant Mortality

For each country, let k ∈ {1, 2} index surveys, j ∈ {1, . . . , nk} index clusters, and i ∈ {1, . . . , Njk}

index birth, where nk is the number of clusters in survey k and Njk is the number of births on record

in cluster j and survey k. Hence, the total number of infants in each survey Nk =
∑nk

j=1Njk. Let yijk

be a binary indicator for whether or not child i died under 1 year old in cluster j and survey k, with

yijk = 1 if child i died and yijk = 0 otherwise. We model yijk as a Bernoulli random variable with

mortality probability πijk,

yijk|πijk ∼ Bern(πijk), (14)

and a probit model for πijk,

P(yijk = 1|βk, γjk) = Φ
(
xTijkβk + γjk

)
, (15)

where Φ(·) is the standard normal CDF, xijk is a covariate vector including the 6 covariates mentioned

in Section ?? along with an intercept term, and γjk is a cluster level random effect that is normally

distributed with variance σ2
k,

γjk ∼ N(0, σ2
k).

For interpretability, we center the continuous variables (maternal age, maternal education, birth

order, and wealth) by subtracting off their respective means in the poorest 20% of households in the

first survey. We also treat female births from rural places of residence as reference levels, giving the

intercept an interpretation in terms of the probability of death for the “average” femal and rural baby

in the survey. Finally, to account for potential nonlinear mortality trends in maternal age, maternal

education, birth order, and wealth, we fit B-splines of the respective centered variables instead of the

raw variables.
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4 Results

We fit the Bayesian model to predict infant mortality using Markov Chain Monte Carlo methods

the MCMCglmm package in R, which allows us to get posterior samples of infant mortality πijk. This

allows us to get uncertainty estimates for all parameters of interest including the components of

the overall and coefficient-by-coefficient decompositions described above. We ran the model until we

obtained 1250 approximately independent posterior samples. We assessed convergence using trace

plots and autocorrelation using ACF plots which are also readily available from the MCMC samples.

4.1 Decline of Child Mortality Between Two Surveys

Table 2 plots posterior summaries of the mortality distributions for all countries and surveys.

Countries are ordered from top to bottom by estimated yearly decline in infant mortality. Mortality

rates are presented as deaths per 1,000 births. The ‘Years Between’ column denotes the number of

years between the two surveys. The ’S1’ and ’S2’ columns indicate the estimated number of deaths

per 1000 births for surveys 1 and 2, respectively. The ‘Difference’ column refers to the difference in

mortality between surveys, and The ‘Yearly’ column is ‘Difference’ divided by ‘Years between’, giving

an estimate of how quickly the mortality rate decreased annually. The ‘95% CI’ columns denote

posterior intervals.

Comparing the model output with the raw data, we can see that the estimated average mortality

rates presented in Table 2 are consistent with the raw mortality rates from Table 1, suggesting that our

model fits the data well. The general trend is that there are substantive and significant decreases in the

average mortality over time for all countries except Cameroon, Zimbabwe, and Colombia. However,

there is heterogeneity between countries in the yearly decline in infant mortality, from more than 5

deaths per 1000 births in Cambodia and Niger to less than one death per 1000 births in Indonesia,

Pakistan, Philippines, and Jordan. Yearly declines in child mortality are only weakly correlated with

mortality levels in the year of the first survey.
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4.2 Decomposition Results

Overall covariate and coefficient effects as well as uncertainty estimates are presented in Table 3

for countries with significant declines in mortality over time. Countries are ordered using the same

order as Table 2. The ‘Effects’ columns denote the actual contribution of the covariate and coefficient

effects to the overall decline, and the ‘%’ column denotes the percent of the overall decline that is

due to the covariate and coefficient effects, with significant effects in boldface. For example the first

row of Table 3 says from survey 1 to survey 2, the mortality rate decreased by about 5% (X effect

+ beta effect). The reduction due to changes in the covariate distributions was accounted for 18%

of the total decline, and the reduction due to changes in the covariate response accounted for 82% of

the total decline.

The individual percentages can be more than 100% when for example a beneficial covariate effect

is more than offset by deleterious coefficient effect (or vice versa). For example, in Cote d’Ivoire, the

mortality rate decreased by about 3%. Covariate effects led to an increase in the mortality rate of

0.3%, but this was offset by the coefficient effect, which led to a decrease in the mortality rate of

3.4%. Similar trends occur in Tanzania, Senegal, Burkina Faso, Gabon, and the Dominican Republic.

For the remaining 35 countries excluding Jordan, Armenia, Ghana and Haiti, the decline in mortality

risk is mostly explained by the coefficient effects. For countries with positive overall X effects, Kenya

has the largest coefficient effect (99%, 95% CI 48%, 161%.

Table 4 presents the results for the coefficient by coefficient decompositions. Countries are ordered

according to the ordering in Tables 2 and 3. Uncertainty is very large for these decompositions and

the vast majority of them are not significant. The intercept is significant for only six out of the

39 countries: Mali (155%), Benin (165%), Comoros (117%), Tanzania (155%), Uganda (118%), and

Kenya (116%). These are the most important effects in substantive terms.

4.2.1 Statistical Significance in the Beta-by-Beta Decomposition.

We investigate the reasons for the lack of statistical significance in the beta by beta decompositions.

Table 2 shows that the posterior interval for the intercept effect is always larger than the variance of
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the overall effect, despite the fact that the intercept term is one term in the sum that makes up the

overall effect. In fact, because the overall coefficient effect can be written as a collapsing sum of the

individual effects, we can examine how the variance of the overall effect changes as more and more

terms are incorporated into the sum.

The results of this exercise are plotted in Figure 6. First, the countries generally follow one of two

trends: Either the variance starts large and gradually decreases until the final term is added to the

model, or the variance decreases until the fifth term, birth order, is added to the model. Then the

variance decreases again until the last term is added to the sum. Because the models for each country

were fit separately, this suggests that the trends we see are not spurious. Second, the variance never

reaches its minimum until the final term is added to the model. This suggests that the individual

components of the sum are negatively correlated and that is causing the lack of statistical significance

in the beta-by-beta decomposition.

5 Discussion and Conclusions

Our analysis confirms that there is large variation in the decline of infant mortality across LMIC.

Several countries experienced little or no decline in infant mortality while others have made remark-

able progress. Our decomposition results show that, in most countries, the decline in infant mortality

in recent decades has been due to actual declines in the propensities of parents with given character-

istics to experience an infant death rather than to changes in the distribution of parental and infant

characteristics. However, there is substantial variation across countries in the relative contribution

to overall infant mortality declines of these declining propensities. Among countries where we are

able to reach statistical significance for our decomposition results, the effects of declining propensities

on infant mortality amount to a low of 56% of the actual decline in Peru and to a high of 110% of

the actual decline in Cote d’Ivoire. (The latter implies that this contribution is counterbalanced by

distributional changes in parental characteristics that contributed to increase infant mortality in Cote

d’Ivoire.)This is in contrast to previous work which has shown that differences in mortality risk are

associated in parental and infant characteristics. For example, Van de Poel et al. (2009) found that
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the higher mortality rates in rural areas in India were caused by variation in parental characteris-

tics. Using aggregated data at the country level, (Bishai et al., 2016) found that most of the decline

in child mortality rates were due to the over time expansion of health services. Demombynes and

Trommlerová (2016), which study the decline in Kenya find that improvements in then distribution

of bed nets as the main driver of mortality declines.

Because most of the decline was due to over timechanges in the effects of parental characteristics,

we developed a new methodology to isolate the contribution of each characteristic to the overall

decline. However, we were unable to find statistically significant effects for most of these individual

characteristics due to large uncertainty on in our decomposition estimates. The main reason for

that high level of uncertainty was the correlation between the effects of parental characteristics.

Nevertheless, some patterns are clear. In general, the intercept tends to have the largest effect,

and is the part of the overall coefficient effect that is most likely to be significant. Statistically,

the intercept represents the part of the model that captures effects not picked up by the birth and

parental characteristics not included in the model. Substantively, we interprete the importance of

the intercept as the importance in general improvements in health beyond the parental and infant

characteristics included in the statistical model. For example, we know that while some developing

have the same income as European countries in the 19th century, they also have mortality rates that

are much smaller than Europe in the past, most likely due to the discovery of germ theory and its

practical implications. (Cutler et al., 2006; Soares, 2007). While some of this knowledge should be

correlated with parental characteristics such wealth and education, not all of it would be.

One important finding from our study is the importance of properly accounting for uncertainty

when using Oaxaca methods. The lack of significance for most of the individual effects is consistent

with Demombynes and Trommlerová (2016). Similarly, in the study by Van de Poel et al. (2009),

decomposition results were presented by no uncertainty estimates were provided. Our results suggest

that even large effects might not be statistically significant due to the correlation among parental,

geographical and birth characteristics.

Our results is that they do not suggest that improvements in parental characteristics are not

worth pursuing. On the contrary, given that we only observed small or no changes on the over time
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distribution of these characteristics, our results suggest that the policies designed to help countries

to meet the SDGs should increase the promote the improvement of parental characteristics, such as

increasing in maternal age of the first birth and increasing maternal education. However, given the

large country-to-country heterogeneity in the magnitudes of the decomposition effects, policies should

be tailored according to each individual country’s needs. For example, higher birth order are more

strongly associated with higher risk of death in Zimbabwe than in Mali and Madagascar.

Methodologically, our work can be extended in a number of ways. Currently, we only have random

intercepts for geographic location. However, our novel methods allow for more complex random effects

structures with several nested random intercepts and slopes and their correlations. That can be useful

for situations were the data is nested by several levels (e.g. provinces, districts, neighoods, mothers)

and we are interested in explore these nesting levels while estimating mortality risk. Our methodology

can also be extended to other types of non-linear random effects models that are useful to study

mortality and health. For example, researchers are often interested in investigating the determinants

of fertility differences between two populations and would like to apply Oaxaca decomposition methods

to this question. Fertility can be estimated with Poisson log-linear models. However, fertility is often

modeled using linear regression models, due to the lack of appropriated decomposition methods for

more complex Poisson models (Shapiro and Tenikue, 2017). Poisson models are often used to study

mortality when the data is aggregated by geographic unit (e.g. number of deaths by district using

number of births are an offset). Our methodology can be easily applied to random effects poisson

models.

Our work has a number of limitations. First, to make our analysis broad and comparable, we have

not included several parental, birth and geographic characteristics that are known to be associated

with increased risk of mortality such as sanitation, electricity, and access to clean water.This is

because much of the data for these excluded variables have high missing rates for several surveys.

Future studies can apply our methodology to country studies, were the comparability of these and

other variables are easier. Another limitation is that Oaxaca–Blinder decomposition approach does

not identify causal effects with observational data. A causal interpretation of the results relies on

the strong assumption that there are no omitted variables, i.e. other factors which determine the
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outcome and are correlated with the observed explanatory variables. This assumption does not hold

strictly, and thus the coefficients in the regressions should not be interpreted as representing clear

causal effects. However, given that the variables included in our analysis have a well-know causal

interpretation, we believe that our results can shed some light on the true determinants of mortality

in the developing world.
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Table 1. A summary of dataset for two surveys in 42 countries (The last column shows the order of
country in Table 2)

Country Survey 1 Survey 2
Year Sample size Deaths / 1000 Year Sample size Deaths / 1000 Order

Armenia 2000 1453 40 2010 1077 14 13
Bangladesh 2000 5323 69 2014 7733 41 20

Benin 1996 3968 106 2012 10361 48 7
Bolivia 1998 5755 66 2008 6821 45 19

Burkina Faso 1993 4363 103 2010 11701 75 24
Cambodia 2000 6929 103 2014 5590 29 1
Cameroon 1991 2546 67 2011 8937 67 40

Chad 1997 5552 118 2015 13697 72 12
Colombia 1990 2930 23 2005 10975 22 42
Comoros 1996 1607 78 2012 2345 30 9

Cote dIvoire 1999 1367 116 2012 5915 81 11
Dominican Republic 1996 1470 44 2013 3623 31 34

Egypt 1995 7402 71 2014 12043 24 15
Gabon 2000 2525 61 2012 4552 40 26
Ghana 1993 2303 75 2014 4464 51 35

Guatemala 1999 3782 50 2015 9099 28 28
Guinea 1999 4805 109 2012 5367 77 17
Haiti 1994 2215 79 2012 5586 65 33
India 1993 42701 73 2006 40833 52 29

Indonesia 1997 14662 49 2012 14244 36 36
Jordan 1990 6721 32 2012 8585 22 39
Kenya 1993 4833 61 2014 16607 39 32

Kyrgyzstan 1997 1616 59 2012 3197 30 21
Madagascar 1997 4721 104 2009 9294 49 4

Malawi 1992 3365 138 2015 11429 42 5
Mali 1996 7354 134 2012 6823 62 3

Morocco 1992 4171 58 2003 4101 41 27
Mozambique 1997 5614 120 2011 8265 67 8

Namibia 1992 2948 66 2013 3812 46 31
Niger 1998 6152 133 2012 9530 62 2

Nigeria 1990 6005 103 2013 26019 73 30
Pakistan 1991 4614 85 2012 7862 69 37

Peru 1992 6468 62 2012 18988 20 23
Philippines 1993 7315 39 2013 5841 27 38

Rwanda 1992 4454 86 2015 5579 31 14
Senegal 1997 5477 79 2015 7645 38 22

Tanzania 1999 3802 91 2015 6430 41 10
Togo 1998 5497 90 2014 4950 50 18

Turkey 1993 2926 57 2004 3405 34 16
Uganda 1995 5568 90 2011 6178 58 25
Zambia 1996 4335 118 2013 9254 50 6

Zimbabwe 1994 3316 59 2015 4893 55 41
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Table 2. A summary of mean mortality probability in two surveys for 42 countries. (Countries are
ordered from largest to smallest by the difference per year. Years between is the time interval between

the two surveys. S1 and S2 are the mean mortality probability in survey 1 and survey 2 per 1000 people.
The difference is S1 probability minus S2 probability, and difference per year is also shown.)

Years Mean mortality probability (per 1000)
Country between S1 95% CI S2 95% CI Difference 95% CI Difference per year 95% CI

Cambodia 14 106 [ 96, 115 ] 31 [ 25, 37 ] 75 [ 63, 87 ] 5.4 [ 4.5, 5.8 ]
Niger 14 135 [ 122, 149 ] 64 [ 57, 71 ] 71 [ 56, 87 ] 5.1 [ 4.0, 6.2 ]
Mali 16 141 [ 129, 154 ] 64 [ 56, 73 ] 77 [ 62, 92 ] 4.8 [ 3.9, 5.8 ]

Madagascar 12 107 [ 93, 121 ] 51 [ 45, 57 ] 56 [ 41, 72 ] 4.7 [ 3.4, 6.0 ]
Malawi 23 144 [ 126, 161 ] 43 [ 39, 48 ] 100 [ 82, 118 ] 4.3 [ 3.6, 5.1 ]
Zambia 17 123 [ 110, 137 ] 52 [ 46, 58 ] 71 [ 57, 86 ] 4.2 [ 3.4, 5.1 ]
Benin 16 114 [ 98, 131 ] 49 [ 44, 55 ] 65 [ 48, 83 ] 4.1 [ 2.5, 5.2 ]

Mozambique 14 125 [ 113, 139 ] 70 [ 62, 77 ] 56 [ 41, 70 ] 4.0 [ 2.9, 5.0 ]
Comoros 16 90 [ 71, 115 ] 35 [ 26, 46 ] 56 [ 33, 81 ] 3.5 [ 2.1, 5.1 ]
Tanzania 16 97 [ 84, 111 ] 44 [ 38, 51 ] 53 [ 37, 68 ] 3.3 [ 2.3, 4.3 ]

Cote dIvoire 13 123 [ 99, 150 ] 83 [ 73, 93 ] 41 [ 14, 69 ] 3.2 [ 1.1, 5.3 ]
Chad 18 123 [ 110, 137 ] 74 [ 68, 80 ] 50 [ 34, 65 ] 2.8 [ 1.9, 3.6 ]

Armenia 10 43 [ 31, 59 ] 17 [ 9, 28 ] 26 [ 9, 43 ] 2.6 [ 0.9, 4.3 ]
Rwanda 23 93 [ 80, 107 ] 34 [ 28, 40 ] 59 [ 44, 74 ] 2.6 [ 1.9, 3.2 ]
Egypt 19 72 [ 65, 79 ] 25 [ 22, 28 ] 48 [ 39, 56 ] 2.5 [ 2.1, 2.9 ]
Turkey 11 61 [ 50, 72 ] 34 [ 26, 42 ] 27 [ 14, 41 ] 2.5 [ 1.3, 3.7 ]
Guinea 13 113 [ 100, 127 ] 82 [ 72, 94 ] 31 [ 14, 49 ] 2.4 [ 1.1, 3.8 ]
Togo 16 92 [ 80, 105 ] 55 [ 46, 64 ] 37 [ 22, 53 ] 2.3 [ 1.4, 3.3 ]

Bolivia 10 70 [ 62, 78 ] 47 [ 40, 53 ] 23 [ 12, 34 ] 2.3 [ 1.2, 3.4 ]
Bangladesh 14 73 [ 64, 83 ] 43 [ 38, 50 ] 30 [ 19, 41 ] 2.1 [ 1.4, 2.9 ]
Kyrgyzstan 15 66 [ 49, 85 ] 34 [ 26, 45 ] 32 [ 13, 52 ] 2.1 [ 0.9, 3.5 ]

Senegal 18 82 [ 72, 93 ] 44 [ 37, 52 ] 38 [ 26, 51 ] 2.1 [ 1.4, 2.8 ]
Peru 20 63 [ 56, 70 ] 20 [ 18, 23 ] 42 [ 34, 50 ] 2.1 [ 1.7, 2.5 ]

Burkina Faso 17 110 [ 96, 127 ] 76 [ 70, 83 ] 34 [ 19, 51 ] 2.0 [ 1.1, 3.0 ]
Uganda 16 94 [ 83, 105 ] 62 [ 54, 71 ] 32 [ 18, 46 ] 2.0 [ 1.1, 2.9 ]
Gabon 12 68 [ 56, 82 ] 44 [ 37, 53 ] 23 [ 8, 39 ] 1.9 [ 0.7, 3.3 ]

Morocco 11 63 [ 51, 77 ] 44 [ 36, 53 ] 19 [ 3, 35 ] 1.7 [ 0.3, 3.2 ]
Guatemala 16 54 [ 44, 65 ] 30 [ 26, 34 ] 25 [ 14, 36 ] 1.6 [ 0.9, 2.3 ]

India 13 72 [ 70, 76 ] 52 [ 49, 55 ] 20 [ 17, 24 ] 1.5 [ 1.3, 1.8 ]
Nigeria 23 104 [ 92, 116 ] 75 [ 70, 79 ] 29 [ 16, 42 ] 1.3 [ 0.7, 1.8 ]
Namibia 21 74 [ 61, 89 ] 47 [ 39, 56 ] 26 [ 11, 44 ] 1.2 [ 0.5, 2.1 ]
Kenya 21 65 [ 56, 75 ] 40 [ 37, 43 ] 25 [ 15, 35 ] 1.2 [ 0.7, 1.7 ]
Haiti 18 91 [ 74, 110 ] 69 [ 61, 78 ] 21 [ 2, 42 ] 1.2 [ 0.1, 2.3 ]

Dominican Republic 17 52 [ 38, 68 ] 33 [ 27, 40 ] 19 [ 4, 36 ] 1.1 [ 0.2, 2.1 ]
Ghana 21 78 [ 65, 94 ] 56 [ 47, 66 ] 22 [ 5, 41 ] 1.0 [ 0.2, 2.0 ]

Indonesia 15 50 [ 46, 54 ] 37 [ 33, 40 ] 13 [ 8, 19 ] 0.9 [ 0.5, 1.3 ]
Pakistan 21 90 [ 79, 101 ] 72 [ 64, 79 ] 18 [ 5, 32 ] 0.9 [ 0.2, 1.5 ]

Philippines 20 41 [ 36, 47 ] 29 [ 24, 35 ] 12 [ 4, 20 ] 0.6 [ 0.2, 1.0 ]
Jordan 22 35 [ 29, 41 ] 23 [ 19, 27 ] 12 [ 4, 19 ] 0.5 [ 0.2, 0.9 ]

Cameroon 20 77 [ 62, 94 ] 68 [ 61, 75 ] 9 [ −7, 27 ] 0.5 [−0.4, 1.4 ]
Zimbabwe 21 65 [ 53, 78 ] 58 [ 50, 67 ] 7 [ −9, 21 ] 0.3 [−0.4, 1.0 ]
Colombia 15 26 [ 20, 34 ] 23 [ 20, 26 ] 3 [ −4, 11 ] 0.2 [−0.3, 0.7 ]
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Table 1 – Results of the decomposition in the decline of infant mortality risk per 1000 births per year
in 42 countries. (Countries are in the same order as Table 2. Bolded results are significant defined
as zero not in the 95% confidence interval.)

Overall X effects Overall beta effects
Country Effects 95% CI % 95% CI(%) Effects 95% CI % 95% CI(%)

Cambodia 1 [ 0.4, 1.5 ] 18 [ 8, 29 ] 4.4 [ 3.5, 5.3 ] 82 [ 65, 100 ]
Niger 0.2 [ 0.0, 0.4 ] 4 [ 0, 8 ] 4.9 [ 3.8, 6.0 ] 96 [ 75, 119 ]
Mali 0.2 [−0.2, 0.5 ] 4 [ −3, 10 ] 4.6 [ 3.6, 5.6 ] 96 [ 76, 117 ]

Madagascar 0.8 [ 0.5, 1.2 ] 18 [ 11, 25 ] 3.8 [ 2.6, 5.1 ] 82 [ 55, 108 ]
Malawi 0.0 [−0.6, 0.5 ] 0 [−13, 12 ] 4.4 [ 3.4, 5.3 ] 100 [ 78, 122 ]
Zambia 0.2 [−0.2, 0.6 ] 5 [ −5, 14 ] 4.0 [ 3.1, 4.9 ] 95 [ 74, 118 ]
Benin 0.4 [ 0.1, 0.8 ] 11 [ 2, 20 ] 3.6 [ 2.6, 4.7 ] 89 [ 64, 117 ]

Mozambique 0.6 [ 0.1, 1.1 ] 15 [ 3, 28 ] 3.4 [ 2.3, 4.5 ] 85 [ 57, 114 ]
Comoros 0.5 [−0.1, 1.1 ] 16 [ −2, 31 ] 2.9 [ 1.5, 4.6 ] 85 [ 42, 131 ]
Tanzania −0.1 [−0.4, 0.2 ] −3 [−12, 6 ] 3.4 [ 2.4, 4.4 ] 103 [ 72, 132 ]

Cote dIvoire −0.3 [−1.3, 0.6 ]−10 [−42, 21 ] 3.4 [ 1.1, 6.1 ] 110 [ 35, 196 ]
Chad 0.5 [−0.4, 1.3 ] 17 [−14, 46 ] 2.3 [ 1.1, 3.5 ] 83 [ 41, 128 ]

Armenia 1.1 [ 0.4, 2.0 ] 44 [ 15, 76 ] 1.5 [−0.1, 3.0 ] 56 [ −4, 113 ]
Rwanda 0.3 [−0.1, 0.7 ] 11 [ −5, 26 ] 2.3 [ 1.6, 3.0 ] 89 [ 61, 119 ]
Egypt 0.9 [ 0.4, 1.3 ] 35 [ 16, 51 ] 1.6 [ 1.1, 2.2 ] 65 [ 43, 88 ]
Turkey 0.2 [−0.2, 0.5 ] 8 [ −9, 22 ] 2.2 [ 1.0, 3.6 ] 93 [ 42, 148 ]
Guinea 0.3 [ 0.1, 0.6 ] 13 [ 3, 24 ] 2.1 [ 0.8, 3.4 ] 87 [ 33, 144 ]
Togo 0.4 [ 0.0, 0.7 ] 17 [ −1, 32 ] 1.9 [ 1.0, 2.9 ] 84 [ 43, 127 ]

Bolivia 0.5 [−0.6, 1.2 ] 22 [−25, 51 ] 1.8 [ 0.5, 3.2 ] 78 [ 23, 137 ]
Bangladesh 0.6 [ 0.1, 1.1 ] 30 [ 6, 52 ] 1.5 [ 0.7, 2.4 ] 70 [ 31, 113 ]
Kyrgyzstan 0.2 [−0.7, 1.0 ] 9 [−34, 46 ] 1.9 [ 0.5, 3.7 ] 91 [ 23, 174 ]

Senegal −0.1 [−0.4, 0.3 ] −4 [−20, 12 ] 2.2 [ 1.4, 3.0 ] 104 [ 66, 142 ]
Peru 0.9 [ 0.6, 1.2 ] 44 [ 29, 58 ] 1.2 [ 0.8, 1.6 ] 56 [ 38, 77 ]

Burkina Faso −0.1 [−0.4, 0.1 ] −6 [−20, 8 ] 2.1 [ 1.2, 3.2 ] 106 [ 58, 158 ]
Uganda 0.3 [ 0.0, 0.6 ] 16 [ 2, 29 ] 1.7 [ 0.8, 2.5 ] 84 [ 39, 128 ]
Gabon −0.1 [−0.5, 0.3 ] −5 [−24, 13 ] 2.0 [ 0.8, 3.5 ] 105 [ 39, 177 ]

Morocco 0.3 [−0.2, 0.8 ] 18 [−14, 47 ] 1.4 [ 0.0, 2.9 ] 82 [ 2, 171 ]
Guatemala 0.6 [ 0.1, 1.0 ] 37 [ 10, 62 ] 1.0 [ 0.3, 1.7 ] 63 [ 18, 113 ]

India 0.3 [ 0.2, 0.4 ] 19 [ 10, 28 ] 1.3 [ 1.0, 1.6 ] 81 [ 61, 102 ]
Nigeria 0.3 [ 0.1, 0.6 ] 27 [ 7, 44 ] 0.9 [ 0.3, 1.5 ] 74 [ 28, 120 ]
Namibia 0.3 [−0.3, 0.8 ] 26 [−21, 68 ] 0.9 [ 0.0, 1.9 ] 74 [ 4, 151 ]
Kenya 0.0 [−0.5, 0.4 ] 1 [−43, 36 ] 1.2 [ 0.6, 1.9 ] 99 [ 48, 161 ]
Haiti 0.2 [−0.5, 0.9 ] 17 [−44, 73 ] 1.0 [−0.2, 2.3 ] 84 [ −18, 197 ]

Dominican Republic −0.3 [−0.9, 0.2 ]−29 [−78, 17 ] 1.4 [ 0.4, 2.6 ] 129 [ 36, 236 ]
Ghana 0.3 [ 0.0, 0.6 ] 29 [ −5, 59 ] 0.8 [−0.1, 1.6 ] 71 [ −6, 151 ]

Indonesia 0.1 [−0.5, 0.5 ] 13 [−58, 60 ] 0.8 [ 0.2, 1.5 ] 87 [ 23, 166 ]
Pakistan 0.1 [−0.2, 0.4 ] 12 [−24, 44 ] 0.8 [ 0.1, 1.5 ] 88 [ 6, 174 ]

Philippines 0.0 [−0.5, 0.3 ] 8 [−76, 55 ] 0.6 [ 0.1, 1.2 ] 92 [ 11, 198 ]
Jordan 0.5 [ 0.2, 0.7 ] 86 [ 30, 134 ] 0.1 [−0.3, 0.5 ] 14 [ −59, 94 ]

Cameroon 0.5 [ 0.2, 0.8 ] 111 [ 41, 181 ] −0.1 [−0.8, 0.8 ]−11 [−179, 172 ]
Zimbabwe 0.3 [−0.3, 0.8 ] 92 [−93, 260 ] 0.0 [−0.8, 0.9 ] 8 [−257, 298 ]
Colombia 0.3 [ 0.0, 0.5 ] 131 [ 2, 267 ] −0.1 [−0.6, 0.5 ]−31 [−282, 251 ]
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Table 2 – The coefficient by coefficient decomposition results per 1000 births per year for 42 countries, keeping order
the same. Bolded results are significant defined as zero not in the 95% confidence interval.

Country Overall 95% CI Intercept 95% CI Wealth score 95% CI Maternal edu 95% CI
Cambodia 4.4 [ 3.5, 5.3 ] 3.9 [ −1.2, 6.3 ] −0.9 [−3.5, 1.8 ] 0.6 [−0.3, 2.0 ]

Niger 4.9 [ 3.8, 6.0 ] 4.4 [ −1.4, 7.9 ] 0.1 [−3.0, 4.2 ] 0.0 [−0.3, 0.2 ]
Mali 4.6 [ 3.6, 5.6 ] 6.2 [ 2.6, 8.3 ] 0.2 [−1.5, 2.7 ] 0.0 [−0.1, 0.1 ]

Madagascar 3.8 [ 2.6, 5.1 ] 3.2 [ −2.5, 6.8 ] 0.0 [−3.1, 4.2 ] −0.3 [−1.3, 0.7 ]
Malawi 4.4 [ 3.4, 5.3 ] 2.4 [ −2.2, 5.3 ] 0.4 [−1.8, 3.4 ] 0.4 [−0.6, 1.5 ]
Zambia 4.0 [ 3.1, 4.9 ] −0.8 [ −9.5, 4.6 ] 2.3 [−1.5, 7.8 ] −0.6 [−2.3, 1.0 ]
Benin 3.6 [ 2.6, 4.7 ] 5.2 [ 2.4, 7.0 ] −0.4 [−1.9, 1.1 ] −0.1 [−0.3, 0.1 ]

Mozambique 3.4 [ 2.3, 4.5 ] 0.1 [ −7.4, 5.6 ] 1.3 [−3.0, 6.9 ] 0.0 [−1.0, 1.2 ]
Comoros 2.9 [ 1.5, 4.6 ] 3.8 [ 0.8, 5.7 ] 0.1 [−1.0, 1.8 ] −0.1 [−0.6, 0.4 ]
Tanzania 3.4 [ 2.4, 4.4 ] 4.8 [ 1.9, 6.4 ] −0.3 [−1.6, 1.3 ] −0.9 [−2.0,−0.2 ]

Cote dIvoire 3.4 [ 1.1, 6.1 ] 4.4 [ −2.9, 9.2 ] 1.7 [−1.3, 6.7 ] −0.1 [−0.6, 0.4 ]
Chad 2.3 [ 1.1, 3.5 ] 2.3 [ −1.9, 5.3 ] 0.3 [−2.1, 3.6 ] −0.4 [−0.7,−0.1 ]

Armenia 1.5 [−0.1, 3.0 ] −0.9 [−13.0, 3.4 ] 0.6 [−2.4, 5.1 ] 1.0 [−2.7, 7.3 ]
Rwanda 2.3 [ 1.6, 3.0 ] 0.3 [ −4.6, 3.2 ] 1.4 [−0.5, 4.8 ] 0.0 [−0.8, 0.7 ]
Egypt 1.6 [ 1.1, 2.2 ] 1.2 [ −2.2, 2.7 ] 0.5 [−0.4, 2.6 ] 0.1 [−0.3, 0.6 ]
Turkey 2.2 [ 1.0, 3.6 ] 2.3 [ −3.4, 5.2 ] 0.8 [−1.1, 4.1 ] 0.0 [−0.8, 0.9 ]
Guinea 2.1 [ 0.8, 3.4 ] 0.7 [ −7.8, 5.8 ] 0.4 [−3.8, 6.3 ] 0.1 [−0.3, 0.6 ]
Togo 1.9 [ 1.0, 2.9 ] 1.8 [ −3.4, 4.8 ] 0.3 [−2.2, 3.4 ] 0.4 [−0.1, 1.2 ]

Bolivia 1.8 [ 0.5, 3.2 ] −3.0 [−14.8, 3.9 ] −1.8 [−7.4, 3.9 ] 3.6 [ 0.0, 8.7 ]
Bangladesh 1.5 [ 0.7, 2.4 ] 2.3 [ −1.0, 4.1 ] 0.7 [−0.8, 3.1 ] −0.3 [−1.1, 0.2 ]
Kyrgyzstan 1.9 [ 0.5, 3.7 ] 2.0 [ −4.3, 5.0 ] −0.2 [−2.6, 2.7 ] −0.3 [−3.5, 3.9 ]

Senegal 2.2 [ 1.4, 3.0 ] 0.3 [ −5.4, 3.6 ] 1.4 [−0.9, 5.1 ] 0.0 [−0.3, 0.3 ]
Peru 1.2 [ 0.8, 1.6 ] 0.0 [ −3.1, 1.7 ] 1.1 [ 0.1, 3.4 ] 0.0 [−0.5, 0.6 ]

Burkina Faso 2.1 [ 1.2, 3.2 ] 3.8 [ −0.6, 6.3 ] −0.2 [−2.2, 2.2 ] 0.1 [−0.1, 0.2 ]
Uganda 1.7 [ 0.8, 2.5 ] 3.6 [ 0.4, 5.4 ] 0.2 [−1.2, 2.2 ] −0.8 [−1.7,−0.2 ]
Gabon 2.0 [ 0.8, 3.5 ] 0.7 [ −7.8, 5.0 ] 1.5 [−1.5, 6.9 ] 0.3 [−1.6, 3.3 ]

Morocco 1.4 [ 0.0, 2.9 ] 0.7 [ −7.6, 4.9 ] 0.4 [−3.0, 4.9 ] 0.2 [−0.3, 1.0 ]
Guatemala 1.0 [ 0.3, 1.7 ] 1.8 [ −0.2, 3.0 ] −0.2 [−1.1, 0.9 ] −0.1 [−0.6, 0.3 ]

India 1.3 [ 1.0, 1.6 ] 1.2 [ −1.4, 3.3 ] 0.5 [−0.8, 2.2 ] 0.0 [−0.3, 0.2 ]
Nigeria 0.9 [ 0.3, 1.5 ] 0.8 [ −2.7, 3.1 ] 0.3 [−1.4, 2.6 ] −0.1 [−0.5, 0.2 ]
Namibia 0.9 [ 0.0, 1.9 ] −0.3 [ −5.8, 2.7 ] 0.7 [−1.6, 4.0 ] −0.7 [−2.4, 0.9 ]
Kenya 1.2 [ 0.6, 1.9 ] 2.3 [ 0.6, 3.2 ] −0.1 [−0.8, 0.7 ] 0.1 [−0.2, 0.6 ]
Haiti 1.0 [−0.2, 2.3 ] 0.8 [ −5.4, 4.5 ] 0.8 [−1.6, 4.7 ] 0.0 [−1.0, 1.1 ]

Dominican Republic 1.4 [ 0.4, 2.6 ] −4.7 [−14.5, 1.7 ] 1.5 [−2.7, 7.1 ] 2.0 [−1.3, 6.9 ]
Ghana 0.8 [−0.1, 1.6 ] 0.1 [ −4.9, 2.8 ] −0.8 [−3.5, 1.9 ] 0.5 [−0.4, 1.6 ]

Indonesia 0.8 [ 0.2, 1.5 ] −2.3 [ −8.8, 1.5 ] 0.9 [−1.7, 4.7 ] 0.6 [−0.9, 2.6 ]
Pakistan 0.8 [ 0.1, 1.5 ] 1.1 [ −3.5, 3.5 ] 1.2 [−0.5, 4.3 ] 0.0 [−0.3, 0.3 ]

Philippines 0.6 [ 0.1, 1.2 ] 0.3 [ −3.2, 1.9 ] 0.2 [−1.1, 2.0 ] −0.5 [−1.8, 0.8 ]
Jordan 0.1 [−0.3, 0.5 ] −0.2 [ −3.0, 1.0 ] −0.6 [−2.4, 0.6 ] −0.9 [−2.8, 0.4 ]

Cameroon −0.1 [−0.8, 0.8 ] 0.4 [ −4.3, 2.9 ] 0.8 [−1.0, 3.8 ] −0.9 [−1.9,−0.2 ]
Zimbabwe 0.0 [−0.8, 0.9 ] −1.6 [ −7.8, 1.9 ] 0.5 [−2.1, 4.6 ] 0.4 [−1.8, 3.2 ]
Colombia −0.1 [−0.6, 0.5 ] −1.4 [ −7.0, 1.1 ] −0.5 [−3.3, 1.8 ] −0.4 [−2.8, 2.0 ]
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Table 2 – (Continued)

Country Maternal age 95% CI Birth order 95% CI Birth Interval 95% CI Sex 95% CI Residence 95% CI
Cambodia 0.5 [−1.6, 4.2 ] −0.2 [−1.8, 0.9 ] 0.0 [−1.1, 1.8 ] 0.1 [−0.4, 0.6 ] 0.4 [ 0.1, 0.7 ]

Niger 0.0 [−2.9, 3.5 ] −2.1 [−7.4, 1.6 ] 2.6 [−1.1, 8.2 ] −0.2 [−0.7, 0.3 ] 0.1 [−0.3, 0.5 ]
Mali 0.0 [−1.3, 1.9 ] −0.1 [−2.0, 1.0 ] −0.9 [−2.0, 1.0 ] −0.6 [−1.0,−0.2 ] −0.2 [−0.4, 0.1 ]

Madagascar 0.0 [−2.9, 3.4 ] −1.0 [−5.5, 2.3 ] 1.8 [−1.2, 6.4 ] 0.0 [−0.6, 0.6 ] 0.0 [−0.3, 0.4 ]
Malawi 1.0 [−0.7, 3.5 ] −0.9 [−3.0, 0.7 ] 1.2 [−0.3, 3.3 ] −0.1 [−0.4, 0.2 ] 0.0 [−0.1, 0.2 ]
Zambia 1.3 [−2.4, 6.1 ] 0.4 [−2.6, 3.0 ] 1.1 [−1.0, 4.5 ] 0.2 [−0.2, 0.7 ] 0.1 [−0.5, 0.8 ]
Benin 0.3 [−1.1, 2.6 ] −0.8 [−2.6, 0.4 ] −0.3 [−1.5, 1.7 ] −0.2 [−0.5, 0.2 ] −0.2 [−0.6, 0.2 ]

Mozambique 2.3 [−0.9, 6.6 ] −1.6 [−5.6, 1.2 ] 1.4 [−1.4, 5.7 ] 0.0 [−0.5, 0.6 ] −0.3 [−0.8, 0.4 ]
Comoros −0.7 [−2.2, 0.9 ] −0.7 [−3.1, 0.8 ] 0.4 [−1.0, 3.0 ] 0.4 [−0.2, 1.1 ] −0.2 [−0.6, 0.4 ]
Tanzania 0.4 [−1.3, 3.3 ] −0.7 [−2.8, 0.7 ] 0.3 [−1.0, 2.6 ] −0.3 [−0.7, 0.2 ] −0.1 [−0.4, 0.4 ]

Cote dIvoire −1.9 [−4.8, 1.6 ] −2.0 [−7.2, 1.7 ] 1.7 [−1.9, 6.9 ] −0.8 [−2.0, 0.4 ] 0.5 [−0.6, 2.1 ]
Chad 0.4 [−1.5, 2.9 ] −0.8 [−4.4, 1.5 ] 0.6 [−1.7, 4.2 ] −0.3 [−0.7, 0.1 ] 0.2 [−0.2, 0.7 ]

Armenia 0.0 [−2.4, 3.9 ] 0.2 [−1.4, 1.8 ] 0.2 [−0.9, 1.9 ] 0.3 [−0.6, 1.4 ] 0.2 [−1.0, 2.1 ]
Rwanda 0.3 [−1.1, 3.2 ] 0.2 [−0.9, 1.0 ] −0.2 [−0.8, 0.9 ] 0.2 [−0.1, 0.5 ] 0.1 [−0.1, 0.4 ]
Egypt −0.3 [−1.2, 1.3 ] −0.7 [−2.2, 0.3 ] 0.9 [ 0.0, 2.4 ] −0.1 [−0.3, 0.1 ] 0.0 [−0.2, 0.3 ]
Turkey −0.2 [−2.0, 2.7 ] 0.1 [−1.7, 1.3 ] −1.0 [−2.5, 0.9 ] 0.1 [−0.6, 1.0 ] 0.1 [−1.0, 1.6 ]
Guinea 0.1 [−3.4, 4.7 ] −1.5 [−7.0, 2.6 ] 1.9 [−2.0, 7.7 ] −0.1 [−0.9, 0.8 ] 0.3 [−0.5, 1.4 ]
Togo −0.8 [−3.0, 2.7 ] −1.0 [−4.4, 1.6 ] 0.8 [−1.6, 4.3 ] 0.2 [−0.4, 0.7 ] 0.2 [−0.3, 0.9 ]

Bolivia 4.5 [ 0.0, 11.7 ] −0.4 [−3.6, 1.6 ] 0.0 [−1.9, 3.2 ] −0.4 [−1.0, 0.2 ] −0.6 [−1.3, 0.3 ]
Bangladesh −0.6 [−1.8, 1.0 ] −0.6 [−2.8, 0.8 ] 0.2 [−1.1, 2.4 ] −0.2 [−0.6, 0.3 ] 0.1 [−0.3, 0.6 ]
Kyrgyzstan −0.4 [−2.5, 3.3 ] 0.0 [−2.1, 1.8 ] 0.2 [−1.2, 2.4 ] 0.6 [−0.1, 1.5 ] −0.1 [−0.4, 0.4 ]

Senegal 0.2 [−1.9, 2.9 ] −0.4 [−3.1, 1.4 ] 1.1 [−0.5, 3.9 ] −0.4 [−0.7,−0.1 ] −0.1 [−0.3, 0.2 ]
Peru 0.2 [−0.6, 1.2 ] −0.5 [−1.7, 0.3 ] 0.5 [−0.3, 1.8 ] 0.0 [−0.1, 0.2 ] −0.1 [−0.3, 0.1 ]

Burkina Faso 0.1 [−1.8, 3.2 ] −0.6 [−3.1, 1.0 ] −0.9 [−2.6, 1.6 ] 0.0 [−0.5, 0.5 ] −0.2 [−0.5, 0.1 ]
Uganda −0.5 [−2.2, 1.8 ] −0.5 [−3.4, 1.5 ] 0.1 [−1.8, 3.4 ] −0.6 [−1.0,−0.1 ] 0.2 [−0.2, 0.6 ]
Gabon −0.9 [−3.7, 2.3 ] 1.0 [−1.4, 3.3 ] −1.5 [−3.2, 0.9 ] 1.0 [ 0.1, 2.1 ] −0.1 [−1.3, 1.4 ]

Morocco 0.0 [−3.2, 5.7 ] −0.2 [−3.3, 2.1 ] 0.2 [−1.8, 3.5 ] −0.1 [−0.9, 0.8 ] 0.1 [−0.7, 1.3 ]
Guatemala −0.5 [−1.6, 0.9 ] −0.1 [−1.8, 0.9 ] 0.4 [−0.6, 2.0 ] −0.3 [−0.6, 0.0 ] 0.0 [−0.3, 0.4 ]

India −0.3 [−1.6, 1.6 ] 1.1 [ 0.0, 1.9 ] −1.2 [−1.9,−0.1 ] −0.2 [−0.4, 0.1 ] 0.0 [−0.2, 0.2 ]
Nigeria −0.4 [−2.2, 1.7 ] −1.8 [−4.9, 0.5 ] 1.9 [−0.4, 5.0 ] 0.3 [ 0.0, 0.7 ] −0.1 [−0.4, 0.2 ]
Namibia 0.2 [−2.1, 3.4 ] −1.2 [−4.0, 0.9 ] 1.9 [−0.1, 4.8 ] 0.0 [−0.5, 0.5 ] 0.2 [−0.5, 1.0 ]
Kenya −0.3 [−1.0, 0.8 ] −0.8 [−2.5, 0.2 ] 0.3 [−0.8, 2.0 ] −0.1 [−0.4, 0.2 ] −0.1 [−0.4, 0.3 ]
Haiti 0.0 [−2.3, 3.6 ] −0.6 [−3.1, 1.1 ] 0.4 [−1.2, 3.0 ] 0.0 [−0.6, 0.6 ] −0.4 [−1.1, 0.5 ]

Dominican Republic 1.4 [−1.5, 5.5 ] −0.4 [−2.6, 1.5 ] 0.9 [−0.7, 3.4 ] 0.2 [−0.5, 1.0 ] 0.6 [−0.3, 1.9 ]
Ghana 0.4 [−2.0, 4.2 ] −0.1 [−2.4, 1.9 ] 0.4 [−1.3, 2.9 ] 0.4 [−0.1, 1.1 ] −0.2 [−0.8, 0.5 ]

Indonesia 1.1 [−1.3, 5.2 ] −0.4 [−2.6, 1.0 ] 0.8 [−0.6, 3.0 ] 0.2 [−0.1, 0.5 ] 0.0 [−0.3, 0.3 ]
Pakistan −0.7 [−2.2, 1.6 ] −0.4 [−2.8, 1.1 ] −0.3 [−1.8, 2.1 ] 0.2 [−0.2, 0.7 ] −0.2 [−0.6, 0.2 ]

Philippines 0.1 [−1.4, 2.8 ] 0.7 [−0.2, 1.6 ] −0.3 [−0.9, 0.6 ] 0.1 [−0.2, 0.4 ] −0.1 [−0.3, 0.2 ]
Jordan 1.0 [−1.0, 4.8 ] −0.4 [−2.4, 0.9 ] 1.3 [ 0.1, 3.3 ] −0.1 [−0.3, 0.1 ] 0.0 [−0.3, 0.5 ]

Cameroon −0.3 [−2.4, 2.6 ] −1.4 [−4.6, 0.8 ] 0.6 [−1.6, 3.8 ] 0.3 [−0.4, 1.1 ] 0.6 [−0.3, 1.7 ]
Zimbabwe 1.0 [−1.1, 4.4 ] −0.6 [−2.7, 0.9 ] 0.3 [−1.0, 2.6 ] 0.0 [−0.4, 0.6 ] −0.1 [−0.7, 1.0 ]
Colombia 1.0 [−1.4, 4.9 ] −1.4 [−4.6, 0.4 ] 1.5 [−0.4, 5.0 ] 0.3 [−0.4, 1.1 ] 0.9 [−0.3, 2.8 ]
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6 Appendix

6.1 Summary of Categorical Covariates

Table 5. Proportion of Male and Urban in each survey for 42 countries

Survey1 Survey2
Country Male Urban Male Urban
Armenia 0.54 0.54 0.43 0.67

Bangladesh 0.51 0.51 0.24 0.32
Benin 0.51 0.51 0.27 0.35
Bolivia 0.51 0.52 0.52 0.51

Burkina Faso 0.51 0.51 0.31 0.21
Cambodia 0.51 0.50 0.14 0.27
Cameroon 0.51 0.50 0.53 0.40

Chad 0.51 0.51 0.37 0.20
Colombia 0.49 0.51 0.82 0.69
Comoros 0.51 0.50 0.24 0.33

Cote dIvoire 0.50 0.50 0.54 0.32
Dominican Republic 0.51 0.51 0.52 0.56

Egypt 0.52 0.52 0.34 0.41
Gabon 0.52 0.50 0.60 0.61
Ghana 0.51 0.52 0.27 0.40

Guatemala 0.51 0.52 0.23 0.35
Guinea 0.52 0.52 0.27 0.29
Haiti 0.50 0.51 0.38 0.34
India 0.52 0.52 0.28 0.38

Indonesia 0.51 0.52 0.26 0.46
Jordan 0.52 0.51 0.66 0.70
Kenya 0.50 0.51 0.11 0.33

Kyrgyzstan 0.50 0.51 0.28 0.26
Madagascar 0.51 0.52 0.23 0.17

Malawi 0.51 0.50 0.26 0.17
Mali 0.51 0.52 0.30 0.23

Morocco 0.51 0.51 0.35 0.43
Mozambique 0.50 0.51 0.26 0.33

Namibia 0.48 0.50 0.30 0.47
Niger 0.50 0.51 0.25 0.22

Nigeria 0.51 0.51 0.35 0.33
Pakistan 0.51 0.51 0.52 0.42

Peru 0.52 0.51 0.58 0.56
Philippines 0.51 0.52 0.45 0.41

Rwanda 0.50 0.51 0.14 0.22
Senegal 0.52 0.50 0.27 0.28

Tanzania 0.51 0.51 0.24 0.22
Togo 0.51 0.50 0.22 0.27

Turkey 0.51 0.51 0.61 0.67
Uganda 0.49 0.51 0.28 0.21
Zambia 0.49 0.51 0.34 0.37

Zimbabwe 0.50 0.50 0.22 0.40
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6.2 The Distribution of Five Continous Covariates
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Figure 1 – Histogram of maternal age in two surveys for 42 countries
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Figure 6 – The overall coefficient effect (9) can be written as a collapsing sum of the individual
coefficients. The above figure plots the variance as more terms are added to the sum. The variance
of the sum remains larger than the variance of the overall coefficient effect until the last coefficient
is added into the sum.
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Appendix

In equations (5) – (8) we integrated out the cluster level random effects γjk to do the Oaxaca

decomposition, allowing us to calculate the marginal expected values of the yijk. For a derivation

of this result, we start with the iterated expectation formula. Let Z be a standard normal random

variable. Then

E[yijk] = E[E(yijk|γjk)] (16)

= E
[
Φ(xTijkβk + γjk)

]
(17)

= E
[
P (Z < xTijkβk + γjk|γjk)

]
(18)

= P (Z < xTijkβk + γjk) (19)

= P (Z − γjk < xTijkβk) (20)

= P
( Z − γjk√

1 + σ2
k

<
xTijkβk√

1 + σ2
k

)
(21)

= Φ
( xTijkβk√

1 + σ2
k

)
(22)

= Φ(xTijkβ̃k), (23)

where β̃k = βk√
1+σ2

k

.
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