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Abstract:  The Earth is undergoing an accelerated rate of native ecosystem conversion and 
degradation and there is increased interest in measuring and modelling biodiversity from space. 
Biogeographers have a long-standing interest in measuring patterns of species occurrence and 
distributional movements and an interest in modelling species distributions and patterns of diversity. 
Much progress has been made in identifying plant species from space using high-resolution satellites 
(QuickBird, IKONOS), while the measurement of species movements has become commonplace 
with the ARGOS satellite tracking system which has been used to track the movements of 
thousands of individual animals. There have been signifi cant advances in land-cover classifi cations 
by combining data from multi-passive and active sensors, and new classifi cation techniques. Species 
distribution modelling has been growing at a striking rate and the incorporation of spaceborne 
data on climate, topography, land cover, and vegetation structure has great potential to improve 
models. There have been signifi cant advances in modelling species richness, alpha diversity, and 
beta diversity using multisensors to quantify land-cover classifi cations and landscape metrics, 
measures of productivity, and measures of heterogeneity. Remote sensing of nature reserves can 
provide natural resources managers with near real-time data within and around reserves that 
can be used to support conservation efforts anywhere in the world. Future research should focus 
on incorporating recent spaceborne sensors, more extensive integration of available spaceborne 
imagery, and the collection and dissemination of high-quality fi eld data. This will improve our 
understanding of the distribution of life on earth.

Key words: biogeography, conservation planning, diversity modelling, remote sensing, species 
distribution modelling.
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I Introduction
The Earth is undergoing an accelerated 
rate of native ecosystem conversion and 
degradation (Nepstad et al., 1999; Myers 
et al., 2000; Achard et al., 2002) and there is 
increased interest in measuring and model-
ling biodiversity from space (Nagendra, 
2001; Kerr and Ostrovsky, 2003; Turner 
et al., 2003). Biodiversity can be defined 
as the variation of life forms within a given 
ecosystem, region or the entire earth. How-
ever, biodiversity is a multifaceted variable 
and so one that can be diffi cult to measure 
and express simply (Duro et al., 2007). Bio-
geographers have long-standing interest in 
the distribution of biodiversity over different 
spatial and temporal scales (Whittaker et al., 
2001; Lomolino et al., 2004). In particular, bio-
geographers are interested in measuring or 
quantifying patterns of species occurrence, 
distribution, and distributional movements. 
Biogeographers are also interested in model-
ling or providing probability maps of species 
distributions and patterns of diversity.

The most accurate ways to collect bio-
geographical data on species distributions are 
intensive ground surveys or inventories of 
species in the fi eld. High-resolution maps of 
species are available in the United Kingdom 
where inventories of plants and birds have 
been undertaken for over a decade at a 10 × 10 
km resolution (Gibbons et al., 1993). Plant and 
animal distribution data are also available at 
a 50 × 50 km resolution in Europe, Australia, 
the USA, Canada, and South Africa (Kidd 
and Ritchie, 2006; Finnie et al., 2007). How-
ever, these inventories require skilled indi-
viduals, a signifi cant amount of time in the 
fi eld, and can be extremely expensive. Even 
in relatively well-studied areas, different fi eld 
data sources can lead to dissimilar or biased 
maps of species distributions and diversity 
(Graham and Hijmans, 2006; Moerman and 
Estabrook, 2006; Pautasso and McKinney, 
2007), and in areas such as the tropics spe-
cies occurrence and distribution data are 
relatively coarse and not well collected 
(Phillips et al., 2003; Schulman et al., 2007b). 

Thus, there is currently a lack of high-
resolution data and maps for a number of re-
gions and biogeographers are continuing to 
research ways to map species distributions 
and diversity that could have signifi cant appli-
cations for conservation planning (Foody, 
2003; Whittaker et al., 2005).

Remote sensing has considerable poten-
tial as a source of information on biodiversity 
at landscape, regional, continental, and global 
spatial scales (Nagendra, 2001; Willis and 
Whittaker, 2002; Turner et al., 2003). The 
main attractions of remote sensing as a 
source of information on biodiversity are that 
it offers an inexpensive means of deriving 
complete spatial coverage of environmental 
information for large areas in a consistent 
manner that may be updated regularly 
(Muldavin et al., 2001; Duro et al., 2007). 
Despite its well-established attractions and 
potential, historically, remote sensing has 
been relatively underused in studies of bio-
diversity (Innes and Koch, 1998; Trisurat 
et al., 2000). Recently, however, there has 
been an increase in studies and reviews of 
bio-diversity taking advantage of advances in 
sensor technology or focusing on broad pat-
terns in variables related to biodiversity (Kerr 
et al., 2001; Turner et al., 2003; Rocchini 
et al., 2007; Saatchi et al., 2008). These 
advances in remote sensing are generally 
divided into direct and indirect approaches 
(Nagendra, 2001; Turner et al., 2003; Duro 
et al., 2007). Direct approaches use space-
borne sensors to identify either species, such 
as the identifi cation of tree species, or land-
cover types, and directly map the distribution 
of species assemblages. Indirect approaches 
use spaceborne sensors to model species dis-
tributions and the distributions of diversity. 
Both approaches have signifi cant applications 
for species and ecosystem conservation that 
have still not been completely developed to 
their full utility.

This research reviews recent and future 
advances in remote sensing that can be used 
by biogeographers to measure and model bio-
diversity patterns from spaceborne sensors. 
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First, we examine satellites currently being 
used to measure and model biodiversity 
from space. Second, we examine advances 
in direct approaches for measuring species 
and land-cover classifications. Third, we 
examine advances in modelling patterns of 
species and diversity. Finally, we examine the 
applications of remote sensing methods for 
conservation planning.

II Spaceborne sensors
There has been a dramatic increase in earth 
observation satellites and sensors over the 
last seven years that have been used to 
measure and model biodiversity from space 
(Table 1). Passive sensors, which record 
refl ected (visible and infrared wavelengths) 
and emitted energy (thermal wavelengths), 
are most frequently used in biodiversity 
studies. The highest spatial resolution data 
comes from commercial satellites, such as 
QuickBird and IKONOS, which contain 

visible and infrared bands used in species 
mapping. The NASA Landsat series is the 
most widely used sensor for biodiversity 
studies due to the ease in which the data can 
be obtained, long time series, and low cost. 
The Landsat series has been used extensively 
in land-cover classifi cations, diversity models, 
and conservation studies. However, Landsat 
ETM+ began to malfunction on 31 May 
2003, ending 31 years of continuous Landsat 
series data. Other satellites and sensors such 
as IRS, SPOT, and ASTER are becoming 
more common; however, the lower number 
of studies may reflect the higher cost and 
availability of the data. The MODIS and 
AVHRR sensors have provided extremely 
useful data for regional, continental, and 
global studies of land-cover classification 
and diversity models. These sensors also 
provide data on temperature, precipitation, 
and fi re that have been incorporated into bio-
diversity studies.

Table 1 Satellites with passive or active sensors that can be used to measure and 
model biodiversity from space

Satellite (sensor) Pixel size (m) Bands Cited in this review

Passive sensors Spectral bands
QuickBird 2 0.6, 2.5 5 7
IKONOS 2 1, 4 5 6
OrbView 3 1, 4 5 0
Landsat (TM, ETM+) 15, 30, 60, 120 7–8 42
IRS (LISS III) 5, 23, 70 5 4
EOS (ASTER) 15, 30, 90 14 3
SPOT 2.5, 10, 1150 5 2
EOS (Hyperion) 30 220 2
ALOS 2.5, 10 4 0
NOAA (AVHRR) 1100 5 8
EOS (MODIS) 250, 500, 1000 36 6
Active sensors Bands
SRTM 30, 90 X, C 5
QSCAT 2500 Ku 2
Radarsat 9–100 C 1
SIR-C 10–200 X, C, L 1
TRMM (TMI) 18000 X, K, Ka, W 1
ERS-2 26 C 0
Envisat (ASAR) 30 C 0
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Radar is the most common active space-
borne sensor used in biodiversity studies. 
Radar sensors send and receive a microwave 
pulse in different wavelengths (ie, X-, C, 
L- bands) to create an image based on radar 
backscatter or interferometric radar can 
be used to provide high-resolution data on 
elevation and topography. Unlike passive 
sensors, radar can penetrate cloud cover, 
providing imagery both day and night re-
gardless of weather conditions. The Shuttle 
Radar Topography Mission (SRTM) provides 
30–90 m resolution data on elevation and 
topography that has been used in species and 
diversity models. Radar backscatter from 
QSCAT, Radarsat-1 and SIR-C has been 
used in land-cover classifi cation and diversity 
models.

III Measuring species and land-cover 
classifi cations

1 Species mapping
Early studies of species mapping used large-
scale aerial photography to identify individual 
plants, especially trees, to species. However, 
there is an increasing desire to identify and 
map species within landscapes from high-
resolution spaceborne sensors that have 
been launched in recent years (Sanchez-
Azofelfa et al., 2003; Turner et al., 2003; 
Goodwin et al., 2005). From fine spatial 
resolution imagery it has been possible 
to accurately identify some plant species 
(Martin et al., 1998; Haara and Haarala, 2002; 
Carleer and Wolff, 2004; Foody et al., 2005). 
Much progress has been made in identifying 
single species of plants, such as non-natives, 
that are of particular interest in natural 
resource management. QuickBird was used 
to map giant reed (Arundo donax) in southern 
Texas with 86–100% accuracy (Everitt 
et al., 2006). The spaceborne hyperspectral 
sensor Hyperion has shown potential for 
identifying the occurrence of select invasive 
species in the southeastern United States, 
such as Chinese tallow (Triadica sebifera), 
to within 78% accuracy due to distinct leaf 

phenology (Ramsey et al., 2005). There has 
also been signifi cant progress in identifying 
tree canopies within forest ecosystems. For 
instance, high-resolution data has been used 
to identify mangrove species (Dahdouh-
Guebas et al., 2004; Wang et al., 2004) and 
seven species of tree were classifi ed with an 
overall accuracy of 86% in temperate forests 
in Belgium (Carleer and Wolff, 2004).

Fine spatial resolution imagery (QuickBird, 
IKONOS, OrbView) from space has also 
allowed researchers to address questions that 
previously were impractical to study from 
space or on the ground. It is now possible, 
for instance, for studies to be undertaken at 
the scale of individual tree crowns over large 
areas (Hurtt et al., 2003; Clark et al., 2004b). 
Such data have been used to quantify tree 
mortality in a tropical rainforest (Clark et al., 
2004a) and so may contribute usefully to 
contentious debates on the issue. Moreover, 
it may sometimes be possible to achieve high 
levels of accuracy for some species from 
satellite as well as airborne sensor data 
(Carleer and Wolff, 2004). There is great 
potential manually or digitally to identify tree 
species and canopy attributes from high-
resolution imagery. High-resolution imagery 
is collected primarily from commercial 
satellites that are still expensive to acquire 
(US$3000–5000 for 10 km2). However, the 
cost should decrease with the competition 
and an increasing number of archived images. 
Thus, it should be possible in the near future 
to identify and map temperate trees to a 
high degree of accuracy within a landscape 
and selected tree canopies within stands of 
tropical forest.

The identifi cation of animals from space is 
currently difficult because most of the 
Earth’s species are smaller than the largest 
pixel of current public access satellites (0.6 m) 
and revisit times are too infrequent for 
meaningful comparisons. However, meas-
urement of species movements has become 
commonplace with the advent of the 
ARGOS satellite tracking system (Gillespie, 
2001). This tracking system uses polar 
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orbiting satellites and transmitters that are 
as small as 5 cm and weigh 49 g to provide 
location data on the movement of species 
for over 500 days (Hawkes et al., 2007; 
Argos, 2008). It has been used to track the 
movements of thousands of individual 
animals. Between 2001 and 2007, over 70 
peer-reviewed publications used this remote 
sensing tracking technology to improve our 
knowledge of biogeography (Argos, 2008). 
Most terrestrial animal research has been 
undertaken on raptors (ie, Steppe eagles) and 
large mammals (ie, Mongolian gazelles) in 
regions where it is difficult to track their 
movements in the fi eld (Meyburg et al., 2003; 
Ito et al., 2005). There have also been rapid 
advances in the study of marine mammals 
(West Indian manatees) and reptiles (sea 

turtles) that are nearly impossible to track 
in the fi eld (Deutsch et al., 2003; Ferraroli 
et al., 2004; Hawkes et al., 2007) (Figure 1). 
As the costs and transmitters’ size continue 
to decrease, this technology will become 
more available and there is still great poten-
tial to identify processes associated with 
species movements by combining remote 
sensing data.

2 Land-cover classifi cation
The production of thematic maps of species 
assemblages is one of the most common 
applications of spaceborne remote sensing 
(Foody, 2002). In particular, plant species as-
semblages and distributional patterns within 
the landscapes, regions, and continents have 
long been of interest to biogeographers (von 

Figure 1 Reconstructed movements of 12 leatherback turtles (A–L) nesting in French 
Guiana and Suriname
Source: Ferraroli et al. (2004).
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Humbolt and Bonpland, 1805). Numerous 
large-area, multi-image-based, multiple-
sensor land-cover mapping programmes exist 
that have resulted in robust and repeatable 
large-area land-cover classifi cations (Franklin 
and Wulder, 2002; Duro et al., 2007). 
Franklin and Wulder (2002) undertook an 
excellent review of large-scale land-cover 
classifi cations, such as CORINE and GAP, 
that generally seek to attain 85% accuracy 
across all mapping classes using a variety 
of passive sensors (TM, SPOT, AVHRR, 
MODIS) and to a lesser extent active sensors 
(RADARSAT, JERS). These land-cover clas-
sifi cations provide direct measurements on 
the distribution of species assemblages. Re-
cently, there have been a number of advances 
in methods that can improve the resolution 
and accuracy of land-cover classification. 
Increased integration of radar data may sig-
nificantly improve classification accuracy 
(Saatchi et al., 2001; Boyd and Danson, 
2005; Li and Chen, 2005). There have also 
been increased use of new classification 
techniques such as decision tree- and support 
vector machine-based approaches and the 
use of multilayer perception and radial basis 
function neutral networks that signifi cantly 
improve accuracy (Foody, 2004a; Boyd 
et al., 2006).

There is a need for further research on 
information extraction techniques. This 
includes continued development of image 
classifi ers for the derivation of accurate the-
matic maps. Contemporary approaches, such 
as those based on support vector machines 
(Pal and Mather, 2005) appear to offer many 
attractions, especially if resources for training 
the classifi er are limited (Foody et al., 2006). 
Attention is also needed on methodological 
issues such as accuracy assessment, a topic 
recognized as a major priority area for 
research (Rindfuss et al., 2004). The validity 
of the maps derived from remote sensing 
is a critical issue but is fraught with diffi culty 
(Foody, 2002). Critically, however, the re-
quired level of accuracy should be defi ned 
for an application because in some instances 

the information provided may be more ac-
curate than suggested in the map’s summary 
accuracy statement (DeFries and Los, 1999) 
and some applications may require quite 
modest levels of accuracy (Foody, 2008). 
There is also much to be gained by moving 
away from conventional thematic mapping 
practices. For example, one great advantage of 
remote sensing is that the analysts can defi ne 
and map the classes of interest to the appli-
cation in hand. There is, therefore, no need to 
be constrained by the map legends. Similarly, 
there is no need to be constrained to follow 
the standard image processing approaches to 
mapping. Finally, there is considerable scope 
for different types of classifi cation analysis 
for mapping. In particular, soft or fuzzy clas-
sifi cations have considerable potential. These 
allow the study of environmental gradients 
and transition zones and subpixel land cover 
(Foody, 1996; Rocchini and Ricotta, 2007). In 
addition, the use of soft classifi cations in post-
classification change detection allows the 
study of land-cover modifi cations as well as 
conversions (Foody, 2001). This is particularly 
valuable, as remote sensing has focused 
on conversions, with little attention paid 
to the severity of change limiting environ-
mental applications (Nepstad et al., 1999; 
Foody, 2001).

IV Modelling biodiversity

1 Species distribution modelling
Species distribution modelling, also known as 
ecological niche modelling, has been growing 
at a striking rate in the last 20 years (Guisan 
and Thuiller, 2005). Species distribution 
models are based on presence, absence, or 
abundance data from museum vouchers or 
fi eld surveys and environmental predictors 
to create probability models of species dis-
tributions within landscapes, regions, and 
continents (Guisan and Thuiller, 2005). A 
review of 60 publications between 2001 
and 2007 showed a majority developed and 
explained an approach or technique, evalu-
ated an approach or compared modelling 
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approaches (ie, Maxent versus GARP), or 
developed new ideas to improve the existing 
models. Most environmental predictors used 
in these species distribution models have 
been based on geographical information 
system data over different scales (Figure 2). 
However, there has been an increase in the 
incorporation of spaceborne remote sensing 
data on climate, topography, and land cover 
that has great potential to improve models of 
species over different spatial scales (Turner 
et al., 2003).

Climatic variables using geographical 
information system data sets (ie, WorldClim, 
BIOCLIM) are the primary environmental 
variables used in species distribution models, 
especially for regions and continents (Elith 
et al., 2006; Pearson et al., 2007). However, 
recently remote sensing data on precipi-
tation at 0.1 degree from NOAA satellites 
(Pearson et al., 2007) and 0.25 degrees from 
Tropical Rainfall Mapping Mission (Saatchi 
et al., 2008) have been used in conjunction 
with ground-based measurements. This may 
be superior to traditional GIS estimates of 
precipitation based on interpolation among 
widely dispersed climate stations in isolated 
regions. Topography data has also been an 
important component of species distribution 
models (Pearson et al., 2004; Eltih et al., 
2006). Topography data is usually collected 
from digitized elevation maps, but 90 m 
elevation and topography data are available 
at a near global extent due to the Shuttle 
Radar Topography Mission. This data is 

increasingly being used in species distribution 
models, especially in the tropics (Chaves 
et al., 2007; Buermann et al., 2008; Saatchi 
et al., 2008). Land-cover classifi cations col-
lected from spaceborne sensors have long 
been used to link species distributions with 
vegetation types and associated habitat pre-
ference (Nagendra, 2001; Gottschalk et al., 
2005; Leyequien et al., 2007). The greatest 
accuracy was found with non-mobile species 
such as plants (Pearson et al., 2004). How-
ever, vegetation maps as a surrogate for 
habitat preference have provided insights 
into the distributions of birds (Peterson et al., 
2006), herpetofauna (Raxworthy et al., 
2003), and insects (Luoto et al., 2002).

Although the inclusion of suggested remote 
sensing indices or metrics can offer a great 
amount of data to improve ecological studies, 
very few publications used remote sensing 
data (Turner et al., 2003; Pearson et al., 2004). 
Recently, there has been an increase in the 
utility of spaceborne passive sensors data 
such as leaf area index (Chaves et al., 2007) 
and percentage tree cover (Buermann et al., 
2008) for species distribution models 
(Figure 3). Active airborne sensors such as 
airborne lidar have been used to improve 
species distribution models by quantifying 
vegetation structure within a landscape 
(Goetz et al., 2007). However, a number of 
recent studies have used radar backscatter 
from QSCAT (Buermann et al., 2008; 
Saatchi et al., 2008) and SIR (Bergen et al., 
2007) to improve species distribution models 

Global
> 10000 km

Climate

Environmental
Variable

Topography

Land-use

Soil Type

Biotic
Interaction

Continental
2000-10000 km

Regional
200-2000 km

Landscape
10-200 km

Scale Domain

Local
1-10 km

Site
10-1000 m

Micro
< 10 m

Figure 2 Modelling and environmental variables by spatial scale 

Source: Pearson and Dawson (2003).
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by providing information on vegetation struc-
ture. In the future, remote sensing data and 
their derived indices should receive increas-
ing attention from researchers applying 
species distribution modelling techniques. 
The inclusion of multiscale remote sensing 
data should allow researchers to improve 
predictions over different scales, especially at 
the landscape and regional scales.

2 Diversity models
There have been a number of advances in 
modelling or predicting species richness, alpha 
diversity and beta diversity using multisensors 
that examine relationships over different 
temporal and spatial scales with increasingly 
sophisticated methods to improve accuracy. 
The simplest measure of diversity is species 
richness or the number of species per unit area 
(ie, trees per hectare, birds per km2). The term 
diversity is more complex and technically 
refers to a combination of species richness 
and weighted abundance or evenness data 
and is generally quantified as an index 
(Simpson index, Shannon index or Fisher 
alpha). These indices are used to defi ne alpha 

diversity, which is the species diversity in 
one area, community, or ecosystem. Beta 
diversity refers to the amount of turnover in 
species composition from one site to another 
or identifi es taxa unique to each area, com-
munity, or ecosystem. Beta diversity is more 
closely related to changes in species simi-
larity or turnover with space. Typically, 
studies have focused on assessments of spe-
cies richness with limited attention to other 
aspects such as species abundance and com-
position that are difficult to detect from 
spaceborne sensors (Foody and Cutler, 
2003; Schmidtlein and Sassin, 2004). 
Information on species richness or diversity 
may be extracted from remotely sensed 
data in a variety of ways such as land-cover 
classifications, measures of productivity, 
and measures of heterogeneity (Nagendra, 
2001; Kerr and Ostrovsky, 2003; Leyequien 
et al., 2007).

Many studies have related species richness 
or diversity to information on the land-cover 
mosaic of test sites derived from satellite 
imagery (Nagendra and Gadgil, 1999a; 
1999b; Gould, 2000; Griffi ths et al., 2000; 

Figure 3 Maxent model of Carpornis melanocephala (Black-Headed Berryeater) 
in Brazil using remote sensing data, climate data, and a combination of both remote 
sensing and climate data
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Kerr et al., 2001; Oindo et al., 2003;Gottschalk 
et al., 2005; Leyequien et al., 2007). Through 
relationships with land-cover and habitat 
suitability, it is possible to assess the diversity 
of species and assess impacts associated with 
changes in the habitat mosaic such as frag-
mentation based on landscape metrics (ie, 
area and isolation) (Kerr et al., 2001; Luoto 
et al., 2002; 2004; Cohen and Goward, 
2004; Fuller et al., 2007; Lassau and Hochuli, 
2007). With such indirect approaches to bio-
diversity assessment, spatial resolution still 
has an infl uence on a study as it impacts land-
cover classifi cation accuracy and indices of 
landscape pattern (Foody, 2002; Millington 
et al., 2003; Saura, 2004) as well as the esti-
mation of summary indices of biodiversity and 
estimates of composition (Kerr et al., 2001; 
Oindo et al., 2003). Nonetheless, even with 
relatively coarse spatial resolution imagery 
it is possible to derive useful information on 
diversity (Kerr et al., 2001; Foody and Cutler, 
2003; Foody, 2004b; Cohen and Goward, 
2004).

Alternatively, a direct relationship be-
tween measures of species richness and 

diversity with remotely sensed data has been 
sought. Most attention has focused on the use 
of the popular normalized difference vege-
tation index (NDVI) from passive sensors 
because it is easy to calculate using the red 
and near infrared bands common to almost 
all passive spaceborne sensors (Oindo and 
Skidmore, 2002; Seto et al., 2004; Gillespie, 
2005; Lassau and Hochuli, 2007). NDVI has 
been associated with net primary productivity 
and has been hypothesized to quantify species 
richness and diversity based on the species-
energy theory (Currie, 1991; Evans et al., 
2005). An increasing number of studies and 
reviews have found signifi cant associations 
between NDVI and diversity (Nagendra, 
2001; Kerr and Ostrovsky, 2003; Leyequien 
et al., 2007). Many studies have reported 
significant positive correlations between 
plant species richness or diversity from plot 
or regions data and NDVI in both temperate 
(Fairbanks and McGwire, 2004; Levin 
et al., 2007; Rocchini, 2007a) and tropical 
ecosystems (Bawa et al., 2002; Gillespie, 
2005; Feeley et al., 2005; Cayuela et al., 
2006) (Figure 4). NDVI can explain between 

Figure 4 Predicted values of á tree diversity (Fisher’s alpha) in the Highlands of 
Chiapas, Mexico, and prioritization of areas for conservation based on identifi cation of 
high predicted á tree diversity within each fl oristic region 
Source: Cayuela et al. (2006).
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30% and 87% of the variation in species 
richness or diversity within a vegetation type, 
landscape, or region. Results for terrestrial 
fauna are more complicated given the mo-
bility of faunal species and because NDVI 
does not directly quantify animal species but 
species habitats (Leyequien et al., 2007). 
Similar relationships between NDVI and di-
versity have been noted for animal taxa such 
as birds and butterflies within landscapes 
(Seto et al., 2004; Goetz et al., 2007) and 
regions (Hurlbert and Haskell, 2003; Foody, 
2004b; Ding et al., 2006; Bino et al., 2008). 
However, NDVI does not always have a 
positive relationship with animal species 
richness and there is no consensus as to 
which scale results in the greatest accuracy.

Heterogeneity in land-cover types, 
spectral indices, and spectral variability de-
rived from satellite imagery has also been cor-
related with species richness (Gould, 2000; 
Rocchini, 2007b). This is largely based on the 
hypothesis that heterogeneity in land cover, 
spectral indices, or spectral variability within 
an area or landscape is an indicator of habitat 
heterogeneity which allows more species to 
coexist and hence greater species richness 
(Simpson, 1949; Palmer et al., 2002; Carlson 
et al., 2007; Rocchini et al., 2007). The vari-
ation in land-cover types within an area has 
been associated with species richness for a 
number of taxa (Gould, 2000; Kerr et al., 
2001; Leyequien et al., 2007). Variation in 
spectral indices has been shown to be pos-
itively associated with species richness and 
diversity for a number of taxa in different 
regions (Gould, 2000; Oindo and Skidmore, 
2002; Fairbanks and McGwire, 2004; Levin 
et al., 2007). More advanced techniques have 
examined the variability of spectral signals in
satellite imagery which has been demon-
strated to have an intrinsic power in evalu-
ating species diversity (ie, Spectral Variation 
Hypothesis; Palmer et al., 2002), since it is 
expected that the higher the spectral vari-
ability is, the higher the habitat and species 
variability will be (Carlson et al., 2007; 
Rocchini et al., 2007).

While knowledge of species richness and 
alpha diversity represents crucial components 
in diversity studies, the concept of beta diver-
sity (ie, the amount of species turnover) is also 
important since it adds to the simpler con-
cept of alpha diversity the capability of 
detecting spatial gradients that functionally 
act in determining the spatial variation in 
species composition (Koleff et al., 2003; 
Nekola and Brown, 2007). To date, few 
efforts have been made to relate species 
turnover to spectral variability, substantially 
confining spectral variation hypothesis to 
species richness prediction (Chust et al., 
2006; Cayuela et al., 2006). Tuomisto et al. 
(2003) and Rocchini (2007a) built distance 
decay models replacing spatial distance 
by spectral ones, on the strength of the ex-
pected high species turnover at high eco-
logical and thus spectral distance. Rocchini 
et al. (2005) derived species accumulation 
curves by ordering plots according to their 
maximum spectral distance, thus accumu-
lating a higher number of species than 
random curves given the same sampling 
effort (Figure 5) and promoting spectral 
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Figure 5 Species accumulation curves. 
Ordering plots on the strength of their 
maximum spectral distance should 
result in a higher number of species than 
random curves, thus promoting spectral 
variability as a straightforward tool for 
inventorying species in a lower timelag
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variability as a straightforward tool for inven-
torying species in a lower timelag. Both 
examples demonstrated the powerfulness 
of using spectral distance between sites for 
beta diversity estimates and species inventory 
maximization.

Most recently, there has been a move 
towards the use of multiple remote sensing 
sensors over different time periods and 
increasingly sophisticated approaches to 
modelling diversity over different spatial 
scales. Many remote sensing studies of di-
versity to date have employed the use of one 
sensor at one period in time (ie, Gillespie, 2005; 
Feeley et al., 2005; Gottschalk et al., 2005). 
However, increasingly diversity studies are 
undertaken using multiple passive sensors 
(ie, Landsat, ASTER, QuickBird) (Levin et al., 
2007; Rocchini, 2007b) or examine rela-
tionships with diversity over different time 
periods (Fairbanks and McGwire, 2004; 
Foody, 2005; Levin et al., 2007; Leyequien 
et al., 2007). These studies are important in 
the assessment of individual sensors and the 
effects of seasonality. There has also been an 
increasing interest in the combination of pas-
sive and active sensors to improve species 
diversity models. Active spaceborne sensors 
can provide data on the vegetation structure 
that has been associated with diversity, 
especially avian diversity, across a number 
of spatial scales (Imhoff et al., 1997; Bergen 
et al., 2007; Goetz et al., 2007; Leyequien 
et al., 2007). Recent advances in the model-
ling of species diversity with a combination of 
passive sensors (MODIS) and active sensors 
(QSCAT, SRTM) from satellites has also 
been used to model tree diversity for the 
entire Amazon Basin (Saatchi et al., 2008).

There has also been an increase in sophi-
sticated statistical and spatial analyses to 
study diversity. The prediction of diversity 
has substantially relied on simple univariate 
regression or multiple regression models 
appropriately scaling sensor imagery to 
fi eld data on vascular plants (Gould, 2000; 
Fairbanks and McGwire, 2004; Carter et al., 
2005; Rocchini, 2007b; Levin et al., 2007), 

lichens (Waser et al., 2004), and mammals 
(Oindo and Skidmore, 2002). While these 
approaches provide a basic understanding of 
patterns and can be used to create predictive 
diversity maps for a landscape, region, or con-
tinent, more sophisticated techniques are 
being examined and developed to model 
patterns of diversity (Foody, 2004a; 2005). 
General linear models and general additive 
models have become increasingly important 
in the spatial prediction of biodiversity pat-
terns; however, they have been poorly used 
considering remote sensing data (Luoto et al., 
2002; Schwarz and Zimmermann, 2005). 
Spatial statistics such as geographically 
weighted regression analyses have also 
resulted in improved models of diversity 
(Foody, 2005). Furthermore, increased ac-
curacy of predictions can be obtained using 
more complex approaches such as neural 
networks (Foody and Cutler, 2006).

Finally, the effects of scale have long been 
recognized as needing to be accounted for in 
biodiversity studies, but this remains a major 
challenge (Whittaker et al., 2001; Willis and 
Whittaker, 2002). Given the importance 
of the spatial dimension to biogeographical 
research (Millington et al., 2003) such scale-
related issues are likely to be a major com-
ponent of future research especially for 
biogeographers interested in creating pre-
dictive diversity maps. While the ability to 
provide complete data coverage for large 
areas is often seen as a major advantage of 
remote sensing, some problems of working 
with large areas have not been addressed. 
It is generally assumed that relationships be-
tween the biodiversity variable of interest and 
the remotely sensed response are spatially 
stationary and hence transferable between 
sites within the region of study. The spatial 
resolution and scale dependence of relation-
ships noted in the literature, however, indi-
cate that the relationships assessed may be 
spatially non-stationary (Foody, 2004b). 
The commonly made assumption that rela-
tionships will remain spatially stationary may 
be untenable and have a negative impact 
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on the generalizabilty of remote sensing 
methods. Various methods may be used to 
model non-stationary relationships and have 
been applied in the modelling of wildlife dis-
tributions from remote sensing (Foody, 2005; 
Osborne et al., 2007). Critically, however, 
remote sensing offers the ability to obtain 
multiscale observations and data to explore 
non-stationary relationships.

V Conservation planning
It is well established that biodiversity is 
threatened greatly by human activity (Myers 
et al., 2000). In particular, land-cover 
changes such as those linked to human-
induced habitat loss, fragmentation, and 
degradation represent the largest current 
threat to biodiversity (Chapin et al., 2000; 
Menon et al., 2001; Gaston, 2005). Remote 
sensing can be used to derive information 
on fragmentation, often in the form of land-
scape pattern and shape indices calculated 
from a thematic map produced with an 
image classifi cation analysis (Gillespie, 2005; 
Lung and Schaab, 2006). Although valuable, 
the approach clearly requires an accurate 
classifi cation and the relationship between 
classifi cation accuracy and landscape pattern 
index accuracy is not necessarily a simple 
one (Foody, 2002; Langford et al., 2006). 
However, it is possible to tailor the process 
to suit the circumstances of a particular con-
servation application such as certain land-
cover types. It is possible to focus attention 
on just these classes, saving time, effort and 
resources that would otherwise be directed 
on the classes of no interest. This is often 
valuable in resource-limited conservation ap-
plications. As an example, the European 
Union’s Habitats Directive seeks to maintain 
the extent of valuable habitats on a no-net-
loss policy. Remote sensing may be used to 
monitor a habitat of interest with a one-class 
classification approach adopted to focus 
effort and resources on the class of interest 
(Boyd et al., 2006; Sanchez-Hernandez et al., 
2007). This can also reduce problems asso-
ciated with not satisfying the assumptions of 

an exhaustively defi ned set of classes that is 
commonly made in a standard classifi cation 
analysis (Foody, 2004a).

In recognition of the need to conserve bio-
diversity, reserves and other such protected 
areas have been formed. Remote sensing 
may have a major role to play in helping to pri-
oritize candidate locations for new reserves 
(Schulman et al., 2007a). The conservation of 
biodiversity needs accurate and up-to-date 
information (Knudby et al., 2007). Methods 
to identify priority areas for conservation 
have generally focused on biological variables 
(Shi et al., 2005) and often only relatively 
coarse biological information is needed to 
identify priorities for conservation (Harris 
et al., 2005). Frequently, what is required 
in conservation assessments is a quick but 
rigorous method to identify where human-
induced threats and high biodiversity coin-
cide (Ricketts and Imhoff, 2003). Remote 
sensing offers a repeatable, systematic, and 
spatially exhaustive source of information 
on key variables such as productivity, dis-
turbance, and land cover that impact bio-
diversity (Duro et al., 2007; Wright et al., 
2007). Moreover, the provision of data for 
large areas is especially attractive in remote 
and often inaccessible regions (Cayuela 
et al., 2006; Saatchi et al., 2008). As such, 
remote sensing is often a cost-effective 
data source (Luoto et al., 2004) and enables 
rapid biodiversity assessments (Lassau and 
Hochuli, 2007).

Remote sensing may also be valuable after 
the establishment of reserves, not least be-
cause competing pressures, such as those 
associated with economic development and 
population growth, place great stress on 
reserves and the surrounding lands (Nagendra 
et al., 2004). The spatial coverage provided by 
remote sensing offers, however, the poten-
tial to monitor the effectiveness of protected 
areas, allowing comparisons of changes 
inside and outside of reserves to be evalu-
ated (Southworth et al., 2006; Wright 
et al., 2007). The ability to monitor the areas 
outside formally protected reserves is also 
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attractive as these may have a major role to 
play in conserving biodiversity (Putz et al., 
2001). For example, even relatively severely 
logged forest outside a reserve may represent 
a signifi cant resource for biodiversity con-
servation (Cannon et al., 1998) and secondary 
forests are an often overlooked resource that 
may be managed to help reduce pressures 
elsewhere (Bawa and Seidler, 1998). Thus, 
actions inside and outside the protected 
areas are important, supporting the view that 
biodiversity conservation activities should 
be undertaken at the level or scale of the 
landscape (Nagendra and Gadgil, 1999b; 
Margules and Pressey, 2000; Potvin et al., 
2000; Hannah et al., 2002). This activity may 
benefi t from remote sensing as its synoptic 
overview provides information on the entire 
landscape.

Remote sensing may be a useful com-
ponent to general biodiversity assessments, 
especially in providing data at appropriate 
spatial and temporal scales. For example, the 
biodiversity intactness index was proposed 
recently as a general indicator of the overall 
state of biodiversity to aid monitoring and 
decision-making (Scholes and Biggs, 2005). 
Although there are concerns for its use, 
notably with the impacts of land degradation, 
remote sensing may be an important source 
of data for its derivation (Rouget et al., 
2006).

VI Conclusions
There can be no question that spaceborne 
imagery has made signifi cant contributions to 
the science of biogeography and biodiversity 
over the last seven years. Future research 
should focus on incorporating recent and 
new spaceborne sensors, more extensive 
integration of available data from passive and 
active imagery that can be used across spatial 
scales, and the collection and dissemination 
of high-quality fi eld data.

The recent developments in satellite 
and sensor technology will further improve 
our abilities directly and indirectly to study 
biogeographical patterns of biodiversity 

from space. The increase in high-resolution 
spectral satellites will make it possible to 
acquire data at enhanced spatial (1 m), spec-
tral (visible, infrared, thermal), and radio-
metric resolutions (11 bit) that can be used 
to map individual species. Indeed, Google 
Earth has led the way by providing QuickBird 
imagery (Loarie et al., 2008). Future, radar 
satellites may be ideal for studying species 
distributions and diversity patterns, especially 
in regions with high cloud cover like the 
tropics. There will be ten satellites (SAR-
Lupe, COSMO- SkyMed, TerraSAR-X) 
launched by 2009 that provide elevation 
and radar backscatter data to 1 m pixel re-
solution (Gillespie et al., 2007). This will 
provide valuable multidimensional data sets 
(vegetation structure, biomass, land-cover 
classifi cations) that should result in a richer 
characterization of the environment than 
conventional passive image data sets.

The full information content of existing 
data sets is often not used in biodiversity 
studies. There should perhaps be a move 
away from analyses based upon simple 
summary indices that commonly underuse 
spectral regions and are undertaken at a 
single spatial scale (Asner et al., 2004). Bio-
geographers are perfectly positioned to take 
advantage of the different satellite data sets 
that integrate climate, topography, spectral, 
and radar data over a landscape, regional, 
continental, and global spatial scale. This 
would allow an increased understanding 
of species distributions, land-cover classifi -
cations, diversity models, and near real-time 
conservation planning data across multi-
spatial scales.

Finally, even if satellite imagery has been 
enthusiastically advocated as the resource of 
the future for directly and indirectly investi-
gating biodiversity from space, it is worth 
remembering that it should aim at sustaining 
rather than replacing field-based meth-
odologies. Biogeographers should continue 
to collect and share high-quality data on 
plants and animals including high-resolution 
location data that can be used in the future 
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to test or validate models. There should be 
an increasing number of data sets such as 
Synthesis and Analysis of Local Vegetation 
Inventories Across Scales (SALVIAS) where 
scientists can store and share data with the 
scientifi c community.

For these reasons, it appears that bio-
geography as a discipline has a secure place 
in science and should continue to improve 
our understanding of the distributions of life 
on earth.
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