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A wide range of biomarkers, reflecting activity in a number of
biological systems (e.g., neuroendocrine, immune, cardiovascular,
and metabolic), have been found to prospectively predict disabil-
ity, morbidity, and mortality outcomes in older adult populations.
Levels of these biomarkers, singly or in combination, may serve as
an early warning system of risk for future adverse health out-
comes. In the current investigation, 13 biomarkers were examined
as predictors of mortality occurrence over a 12-year period in a
sample of men and women (n � 1,189) 70–79 years of age at
enrollment into the study. Biomarkers examined in analyses in-
cluded markers of neuroendocrine functioning (epinephrine, nor-
epinephrine, cortisol, and dehydroepiandrosterone), immune
activity (C-reactive protein, fibrinogen, IL-6, and albumin), cardio-
vascular functioning (systolic and diastolic blood pressure), and
metabolic activity [high-density lipoprotein (HDL) cholesterol, total
to HDL cholesterol ratio, and glycosylated hemoglobin]. Recursive
partitioning techniques were used to identify a set of pathways,
composed of combinations of different biomarkers, that were
associated with a high-risk of mortality over the 12-year period. Of
the 13 biomarkers examined, almost all entered into one or more
high-risk pathways although combinations of neuroendocrine and
immune markers appeared frequently in high-risk male pathways,
and systolic blood pressure was present in combination with other
biomarkers in all high-risk female pathways. These findings illus-
trate the utility of recursive partitioning techniques in identifying
biomarker combinations predictive of mortal outcomes in older
adults, as well as the multiplicity of biological pathways to mor-
tality in elderly populations.

older adults � catecholamines � inflammation � recursive partitioning

A substantial diversity of biomarkers, reflecting possible dys-
regulation in multiple biological systems (e.g., cardiovascular,

neuroendocrine, immune, and sympathetic nervous systems) have
been used to predict downstream morbidity and mortality in elderly
populations (1–7). The prediction rules are usually based on
indicators of health risks that are combined in additive scoring
algorithms, some of which have been interpreted as operational-
izations of the concept of allostatic load (8–10). Such additive
formulations are responsive to the reality that many older people
have multiple co-occurring biological risk factors (4, 11–14). How-
ever, they may also obscure understanding of multisystem dysregu-
lation by creating a kind of ‘‘black box’’ summary score, the contents
of which may vary considerably from person to person. Indeed,
examination of what is in the box often reveals no single combi-
nation of risk factors that occurs with high frequency in large
population samples (15). Instead, there seem to be many different
combinations of biomarkers associated with high risk of adverse
health outcomes in older adults, a reflection of the multiple
biological pathways to disease, disability, and mortality in elderly
populations.

The primary objective of this article is to identify potentially
diverse biological pathways to mortality in a high-functioning
cohort of older (70–79 years of age) adults from the MacArthur
Study of Successful Aging, a prospective epidemiological investi-
gation of factors associated with healthy aging. Specifically, our aims

are to (i) identify combinations of biomarkers and their zones of
values associated with high levels of mortality risk in older men and
women; (ii) examine whether biomarkers most predictive of mor-
tality differ between men and women; and (iii) introduce prediction
rules with high levels of sensitivity and specificity that are based on
conjunctions of biomarker conditions. A secondary aim is to
present recursive partitioning (16, 17) as an analytical methodology
that allows for the identification of such heterogeneous combina-
tions of biomarkers and their value zones. Throughout, the focus is
on identifying subclinical levels of biomarkers that characterize
high-risk (HR) conditions, because such knowledge has the poten-
tial to contribute to preventive interventions that might prolong life
beyond what is expected on the basis of current clinical risk criteria.

We selected for examination thirteen biomarkers that represent
various regulatory systems in the body, including the cardiovascular
[systolic blood pressure (SBP) and diastolic blood pressure (DBP)],
neuroendocrine [epinephrine (EPI), norepinephrine (NE), cortisol,
and dehydroepiandrosterone (DHEA)], metabolic [high-density
lipoprotein (HDL) cholesterol, total�HDL cholesterol, glyco-
sylated hemoglobin (HbA1c)], and immune [IL-6, fibrinogen, C-
reactive protein (CRP), and albumin] systems. Biomarkers were
selected for use in analyses if the biomarker was a primary mediator
of a biological regulatory system responsive to internal or external
challenges (e.g., sympathetic nervous system hormones and inflam-
matory cytokines, such as IL-6), or if the biomarker was known to
exhibit change in response to interaction with a primary mediator
(e.g., CRP production in response to IL-6). The remaining mea-
sures were selected to represent secondary outcomes of these
mediating processes. Many of the biomarkers have been examined
individually in previous research as predictors of disability, mor-
bidity, and mortality in older adults, but they are less often
examined in combination as predictors of health outcomes. This
practice has led to a limited understanding of the potential utility
of information from multiple biological systems in the prediction of
health outcomes in older adults.

Our general analytic strategy was to use repeated subsamples of
male and female participants from a larger sample of older adults
to develop recursive partitioning (RP) trees (16, 17) for each male
and female subsample. Each produced tree identified multiple
combinations of biomarkers and their value ranges, what we refer
to as ‘‘pathways,’’ which led to a subgroup of participants within the
tree with high or low rates of mortality. The tree depicted in Fig. 1
provides an example of the various HR pathways (i.e., biomarker
combinations) that can be identified with such a technique. For
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example, a combination of high levels of NE, CRP, and EPI led to
a subgroup of 30 male participants (terminal node 12 in Fig. 1) with
a mortality rate of 93.3% within the group. A second group of male
participants (terminal node 9) with a high mortality rate (83.3%) is
characterized by a combination of biomarkers that includes NE
levels in a moderate range, high levels of IL-6, and low levels of
HDL cholesterol.

It is important to emphasize that our use of the word ‘‘pathway’’
in describing routes to terminal (end) nodes in trees does not imply
a time ordering of events (or a process) leading to a particular state
(dead or alive). All pathways simply represent logical AND state-
ments describing combinations of biomarker conditions that are
associated with degrees of mortality risk (as indicated by the
mortality rate in a terminal node). To ensure stable trees, we
restricted the number of levels at which the tree could be split to five
(restricting the potential number of biomarkers in a pathway to a
maximum of five), and we required that each pathway represent the
biomarker combinations predicting a given mortality rate for a
minimum of 10–15 individuals (to limit the possibility that we were
identifying idiosyncratic pathways). Our tree-growing strategy di-
verged slightly from common RP practices in three respects. First,
in contrast to the typical use of RP to identify a single tree produced
from the selection of the optimal splitting predictor at each node in
a tree, we also explored the production of additional trees when
using second, third, fourth, or even fifth best splits at the top three
nodes within a tree. Our justification for the use of these seemingly
suboptimal splits is that we frequently find that two or more
biomarkers have nearly equivalent goodness-of-split scores at a
given node. Thus, many additional HR pathways are identified than
would be the case if we insisted on optimal splits at every point in
the tree generation process [see Zhang et al. (18) for a discussion
of the benefits of exploring suboptimal splits and multiple trees in
RP analyses]. Second, we used our multitree generation method on
repeated subsamples of a larger data set. This subsampling tech-
nique allowed us to identify HR biomarker combinations that may

predominate in specific subsets of the larger analytic sample, while
also allowing for examination of the predictive performance of
observed biomarker pathways in predicting mortality in the larger
sample. Third, from the multiple trees grown in multiple sub-
samples of the larger data set, we selected a smaller collection of
trees, a forest, that was used to characterize the multiple HR
pathways across the selected trees. Thus, we obtained a set of
varying biomarker combinations (pathways) predictive of a high
rate of mortality in this sample of older adults. We then examined
the consequences, in terms of mortality, of individuals’ represen-
tation in varying numbers of these HR pathways across the forest
of trees.

Results
Descriptive statistics for each biomarker for male and female
participants are presented in Table 1. In terms of mean levels, men
and women are, overall, fairly similar. However, women have higher
levels of HDL cholesterol, cortisol, NE, and EPI, whereas males
have higher DHEA and IL-6 and a higher total to HDL cholesterol
level (all P � .01 for mean comparisons of log-transformed nor-
malized variables).

Recursive Partitioning Forests and Mortality Prediction. Men. As
detailed in Table 2, 11 of the 13 biomarkers enter into HR pathways
(� 70% dead) for the ten trees selected for the male forest. These
biomarkers are cortisol, CRP, IL-6, fibrinogen, NE, EPI, HbA1c,
HDL cholesterol, DHEA, and SBP and DBP. Each pathway
contained one to three biomarker values, with most pathways
composed of a combination of three biomarkers. Inflammatory and
hormone biomarkers occurred most frequently in high-risk path-
ways, with blood pressure and HbA1c appearing less frequently. The
cut points defining the boundaries of high-risk zones are given in
Table 1. In some pathways, biomarker value zones associated with
high risk for mortality are comparable with conventional clinical
values associated with increased risk for disease and death; in

Fig. 1. Example of a single tree produced from RP analyses of male subsample. Thirteen biomarkers were entered as candidate predictors of the occurrence
of mortality over a 12-year period. The biomarker predictor selected as the splitting variable at a particular node in the tree is depicted at the top of two branched
lines beneath it. The numerical value in each branch signifies the zone of biomarker values associated with a particular mortality rate depicted in the box below
the branch. Boxes at the end of a branch chain are terminal nodes, and the combination of biomarkers and cut point values within a branch chain leading to
a terminal node forms a biomarker pathway. Those pathways with terminal nodes that have a �70% rate of mortality in men and a �60% rate of mortality in
women were defined as HR pathways.
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others, risk zone values fell notably above or below conventional
cutoffs (e.g., SBP and CRP values). Conventional risk values are not
available for all examined biomarkers.

Sensitivity and specificity of mortality prediction was calculated
for each of the trees in the male forest based on a training sample
and then upon their use in a test sample. The results for each
individual tree are shown in Table 3. To exploit the diversity of HR
pathways across the forest, we introduced a hierarchy of prediction
rules: predict dead within 12 years of baseline if the individual is on
an HR pathway in at least k trees, where 1 � k � 10. The sensitivity
and specificity of these rules, as a function of k, are displayed in
Table 3. The best choices, which maintain both high sensitivity and
specificity, are for k � 2 or 3.

One would anticipate that the probability of death within 12 years
should be a monotone increasing function of the number of HR

pathways on which a given individual is located. This behavior is
shown in the nested family of survivor curves in Fig. 2a.
Women. Only six of the 13 biomarkers enter into HR pathways
(�60% dead) in the three trees selected for the female forest (see
Table 2). These biomarkers are SBP, DBP, HbA1c, CRP, IL-6, and
DHEA. HR female pathways contained one or two biomarkers,
with blood pressure biomarkers represented in the majority of trees,
and inflammatory, hormone, and HbA1c biomarkers also repre-
sented in one or more trees. As documented in Table 1, HR
biomarker zones derived from analyses were similar to established
conventional risk zones, although the cut-points for CRP and HbA1c

were slightly higher than conventional values.
Sensitivity and specificity of each of the individual trees and of

representation in HR paths in multiple trees, k, across the forest, are
shown in Table 3. As was the case with men, the probability of death

Table 1. Descriptive statistics and high-risk cut point values derived from RP analyses of biomarker predictors in
male and female samples

Descriptive statistics

Males (N � 328) Females (N � 339) HR cut points

Range
Mean
(SD) Range

Mean
(SD) Males Females Conv.*

SBP, mmHg 86.7–192.7 138.2 (18.6) 98.0–204.7 137.6 (18.9) �158.7 �141 �140
DBP, mmHg 43.3–108.7 77.3 (10.5) 50.0–109.3 76.4 (10.1) �69, 73.3 �91 �75, �90
HDL chol., mg�dl 10.0–118.0 42.3 (13.1) 22.0–111.0 51.7 (15.6) �27.5, 32.5 �40
Total�HDL chol. 1.7–22.6 5.3 (2.0) 2.1–11.9 4.9 (1.7) �5
CRP, mg�liter 0.2–45.4 3.2 (4.8) 0.2–65.6 3.3 (6.1) �1.3, 1.6 �3.6 �3
IL-6, pg�ml 0.4–40.4 4.9 (6.0) 0.6–36.5 4.1 (5.1) �1.9, 2.5, 2.6, 2.7 �4.5
Fibrinogen, mg�dl 98.0–893.0 289.8 (86.5) 130.0–694.0 288.5 (82.6) �228.5, 235, 235–289
DHEA, mg�dl 5.0–324.0 83.1 (55.9) 5.0–222.0 55.9 (36.1) �43.5, 55 �17.5
Cortisol, ug�g creat. 0.7–139.3 20.2 (16.8) 6.1–126.5 23.4 (16.1) �9.1, 14.6, 29, 37.3
NE, ug�g creat. 1.7–220.0 37.8 (23.8) 4.0–145.7 42.8 (19.3) �20, 20–37.9, 27.2,

35.9, 37.9, 64.2
�26.5

EPI, ug�g creat. 0.8–21.8 3.5 (2.2) 1.1–15.6 4.5 (2.2) �1.7, 1.7–3.6, 2.8,
3.4, 4.3

HbA1c, % 4.1–20.2 6.9 (2.0) 3.6–15.8 6.8 (1.8) �7 �7.5 �7
Albumin, mg�dl 2.6–6.1 4.1 (0.3) 3.3–4.9 4.1 (0.3) �3.5, �5

creat., creatinine; chol. cholesterol.
*Conv., conventional biomedical HR cut point (see refs. 19–26 regarding values for conventional cut points).

Table 2. Biomarkers present in HR mortality pathways in the male and female forests

A ● indicates that the biomarker in the row of the dot is present in the HR pathway represented by the column of the dot. Shading
is provided to assist readability.
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within 12 years was an increasing function of membership in an
increasing number of HR pathways in the forest (see Fig. 2b).

Combinations of HR Conditions in Male and Female Forests. Men.
Closer examination of those men (n � 106) who were in HR
pathways in at least half of the trees in the forest (i.e., 5�), indicated

that there is a cluster of five biomarkers that occur together at
elevated levels: CRP, IL-6, fibrinogen, NE, and EPI. In this
subgroup of men, 71.7% have all five of these biomarkers at
elevated-risk levels, 97.2% have four or more of the five biomarkers,
and 100% have three or more of the five biomarkers at elevated-risk
levels.
Women. For women in HR pathways in two or more trees out of the
forest (n � 29), a cluster of four biomarkers occurred frequently:
SBP, CRP, IL-6, and HbA1c. All four of these biomarkers were
present for 17.2% of the women, and two smaller biomarker
clusters of SBP, HbA1c, and CRP or IL-6 occurred in 34.5% or
37.9% of the women, respectively. SBP was present at elevated risk
levels in all (100%) of the women with two or more HR pathways.

Gender Comparisons. Elevated SBP occurs in 100% of the HR
female pathways and in only 17% of the HR male pathways.
Fibrinogen, NE, and EPI, individually and in combination, domi-
nate male pathways but do not even occur in female pathways.
CRP and IL-6 occurred frequently in both male and female HR
pathways.

Discussion
The present analyses demonstrated that there are multiple routes,
characterized by combinations of biological variables, that lead to
mortality in older adults. In most instances, HR mortality pathways
are characterized by the interacting presence of biomarkers from
multiple regulatory systems. In men, markers of the endocrine and
immune systems were commonly represented in HR mortality
pathways, with a lesser role for indicators of the cardiovascular and
metabolic systems. Fewer HR pathways were identified in women,
but a range of biomarkers was present, including blood pressure,
inflammatory markers, DHEA, and HbA1c.

The predominance of inflammatory biomarkers in HR pathways
in both men and women points to a central role of these primary
mediators in mortality outcomes in older adults. The concomitant
presence of a number of neuroendocrine variables, especially NE in
male pathways, points to the potential interacting influence of
neuroendocrine and inflammatory biomarkers in affecting health
in elder adults. Biomarkers of these systems regulate the functions
of a wide range of biological systems, including metabolic, repro-
ductive, and cardiovascular systems, as well as other neuroendo-
crine and immune processes (5, 27, 28). As these findings illustrate,

Table 3. Sensitivity and specificity of mortality prediction for HR tree pathways

Tree

Sensitivity�specificity of pathways from individual trees
Sensitivity�specificity of representation in

multiple HR pathways

Training sample Testing sample

k� (no. of HR
pathways)

Sensitivity,
%

Specificity,
%

Sensitivity,
%

Specificity,
%

Sensitivity,
%

Specificity,
%

Males
1 52.4 58.1 37.5 38.2 1 92.8 42.9
2 57.3 40.9 46.7 20.6 2 85.0 56.5
3 66.0 59.1 46.9 39.7 3 77.2 70.2
4 43.2 56.9 29.2 46.2 4 62.3 81.4
5 45.3 51.4 15.3 36.5 5 51.5 87.6
6 51.6 57.8 33.3 48.1 6 36.5 92.5
7 54.9 54.5 41.5 43.1 7 27.5 97.5
8 45.1 45.5 33.8 33.3 8 21.0 98.8
9 45.1 52.7 33.8 41.2 9 13.2 100
10 81.7 71.9 59.5 54.2 10 7.8 100

Females
1 33.3 95.5 17.2 84.7 1 53.7 79.1
2 33.9 95.4 17.9 85.7 2 22.1 96.7
3 27.9 95.4 25.9 89.0 3 7.4 99.6

k�, indicates membership in at least the designated number of pathways (e.g., k� � 3 indicates representation in at least 3 HR pathways).
An individual can be in only up to one HR pathway within any single tree, but can be in multiple HR pathways across the 10 trees.
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Fig. 2. Survival over the 12-year follow-up period as a function of representa-
tion in varying numbers of HR pathways in the male (a) and female (b) forests.
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the combined presence of a number of these biomarkers at HR
levels may serve as an early warning sign of subsequent mortality.

The cut points for specific biomarkers in observed risk pathways
also serve to identify the zones of biomarker values that are
associated with high mortality risk. For a number of biomarkers, the
range of values in HR pathways is comparable with values identified
in the biomedical literature as associated with increased risk of
disease and death (e.g., see values for HbA1c, SBP (females), and
DBP in Table 1). However, in a number of HR pathways, biomarker
cut points varied substantially from conventional clinical criteria,
with threshold values above or below established clinical criteria
(e.g., see values for CRP in Table 1). These findings highlight the
utility of RP techniques in identifying not only clusters of biomar-
kers that predict health outcomes in older adults, but also specific
and interacting zones of biomarker values associated with negative
outcomes, including those that may vary in men and women.

An important feature of our analysis was the utilization of
population subsampling and RP tree construction methodology to
develop a forest and, thereby, identify multiple combinations of
biomarkers and their ranges defining elevated-risk conditions for
mortality. The variation in risk zone boundaries (see Table 1) is a
further reflection of the heterogeneity in subpopulations regarding
preclinical levels of biomarkers that define elevated risk conditions.
The construction of distinct trees on different subsamples of a larger
data set was the principal analytical step that exposed this variabil-
ity. This process is consistent with the philosophy of bagging
classification trees (29, 30). However, our formation of a prediction
rule diverges from bagging algorithms. The bagging method would
require an individual to be in an HR pathway in a majority of trees
across a forest (e.g., �5 in the 10-tree male forest) to qualify for
mortality prediction. In contrast, we used a less-stringent require-
ment: membership in an HR pathway in 2� or 3� trees. This
alternative ensured higher sensitivity and specificity of the predic-
tion rule than would have been obtained with the standard bagging
method.

Our findings may have implications for clinical practice and
future clinical research. With a focus on prevention, it may be useful
to include assays on biomarkers such as CRP, IL-6, fibrinogen, EPI,
and NE as part of a standard physical examination. It is important
to note that a growing literature documents linkages between these
biomarkers and more macro upstream factors, such as environ-
mental, behavioral, psychosocial, and sociodemographic factors
(10, 31). Thus, values on these markers may represent the biological
signature of individuals’ life experiences and may represent the key
pathways through which such experiences are transduced into
positive or negative states of health.

One limitation of this study is that these pathways were explored
in a sample of older adults who were recruited for participation on
the basis of high levels of cognitive and physical functioning. Thus,
our findings may not generalize to older adults with lower levels of
baseline functioning. Another limitation is that biomarker infor-
mation was limited to a single measurement point at the beginning
of the study. Greater sensitivity in the prediction of mortality might
be achieved by using information on biomarker values from mul-
tiple time points or change in biomarker levels over time. Our
analyses also did not incorporate other risk (e.g., psychosocial or
environmental stressor experience) or protective (e.g., health pro-
moting behaviors) factors that might interact with biological vari-
ables to affect health. The inclusion of these other variables in
analyses is an important aim of future work in this area.

Finally, although the focus here has been on the prediction of
high risk for mortality, it is also worth investigating what combi-
nations of biomarkers confer low risk for mortality. Such efforts
may point to important protective processes (e.g., the role of
DHEA-S in down-regulating cortisol), and as such advance knowl-
edge of interacting regulatory systems that promote healthy aging.

Materials and Methods
Participants were from the MacArthur Study of Successful Aging,
a longitudinal investigation of high functioning older adults. Par-
ticipants were sampled on the basis of age (70–79 years of age) and
cognitive and physical functioning levels (those in the top third of
their age group on two measures of cognitive and four measures of
physical functioning) from three community-based cohorts
(Durham, NC; East Boston, MA; and New Haven, CT) that were
a part of the Established Populations for Epidemiological Studies
of the Elderly (32, 33).

Of the 4,030 age-eligible adults, a cohort of 1,313 met screening
criteria and were invited to participate; 1,189 (530 men, 659 women)
agreed to participate and provided informed consent. As part of
baseline data collection, participants completed face-to-face and
phone interviews and provided blood (80.3%) and overnight urine
(85.8%) samples. Baseline data collection occurred in 1988 and
1989, with follow-up interviews in 1991 and 1995.

Measures. Biological measures. SBP and DBP were measured as the
average of the second and third of three seated blood pressure
readings. Blood and urine samples were collected on the morning
following participants’ baseline interview. Blood samples were used
to assay HDL and total cholesterol, CRP, IL-6, fibrinogen, DHEA,
albumin, and HbA1c. HDL cholesterol level was assessed by the
direct homogeneous method (Genzyme Diagnostics, Cambridge,
MA), and total cholesterol was measured by using colorimetric,
enzymatic methods (34). CRP and IL-6 were measured by high-
sensitivity ELISA (High Sensitivity Quantikine Kit, R & D Systems,
Minneapolic, MN). Fibrinogen was assessed by an automated
clotrate assay based on the original method of Clauss (35), with the
ST4 instrument (Diagnostica Stago, Parsippany, NJ). DHEA was
measured by a one-site chemiluminescence immunometric assay on
the Nichols Advantage. Levels of albumin were assessed by auto-
mated Sequential Multiple Analyzer. HbA1c levels were assayed by
affinity chromatography methods (36) and are expressed as per-
centage (%) of blood plasma. Cortisol, NE, and EPI were assayed
from overnight (12-hour) urine samples with HPLC (37, 38) by
Nichols Laboratories (San Juan Capistrano, CA). Values are re-
ported in micrograms per gram (�g�g) creatinine to adjust for body
size.
Mortality. Deaths were identified through contact with next of kin
at the 1991 and 1995 interviews and through the National Death
Index. As of 2000, approximately half (49.8%; n � 492, 284 males,
208 females) of the participants were identified as deceased. Date
of death information was available for all but three of the deceased
participants whose death was confirmed by next of kin contact at
the 1995 interview. Because the actual date of death was unknown,
these participants were assigned a date of death that occurred
approximately halfway in between their previous (1991) examina-
tion date and the follow-up (1995) examination date.
Missing data. A significant number of participants were missing
information on one or more biomarkers. Complete data for all 13
biomarkers were available for 339 females (51.4%) and 328 males
(61.9%). Four participants were missing data on all biomarkers and
were therefore excluded from analyses; the remaining participants
were missing data on 1 to 11 biomarkers. Primary analyses were
conducted by using subsamples of male and female participants
with complete data. However, because tree-growing algorithms can
use data with incomplete information, analyses were repeated with
data sets that included participants with missing data on some
biomarker predictors to compare the content and predictive per-
formance of trees obtained from such analyses with those obtained
from analyses with complete data. Results are detailed in support-
ing information, which is published on the PNAS web site.

Participants with complete data did not differ from those with
incomplete data in terms of educational attainment, marital status,
ethnicity, number of chronic health conditions, self-rated health, or
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smoking behavior. However, those with complete data did report
greater alcohol use in the previous month and more physical activity
and had higher cognitive and physical functioning scores than those
with incomplete data.

Recursive Partitioning Forests and Mortality Prediction. Generating
trees for mortality prediction. Gender-stratified analyses were con-
ducted to identify combinations of biomarker predictors that may
vary between men and women and because gender itself is a
primary determinant of mortality rate. In preliminary RP analyses,
which included gender as a predictor, in all cases gender was the
primary splitting predictor variable at the root node in each tree.
This finding led to subsequent biomarker combination pathways
that were specific for men and women; thus, gender-stratified
analyses were conducted for ease of analysis and interpretation.

We drew four training samples with replacement from complete
male (n � 328) and female (n � 339) data sets; each contained
�60% of the original sample (males: n1 � 196, n2 � 204, n3 � 212,
n4 � 182; females: n1 � 199, n2 � 209, n3 � 221, n4 � 226). On each
training sample, we fit up to 15 trees using the commercially
available software program AnswerTree v3.1 (SPSS, Chicago, IL),
according to the following strategy. First, splits were specified, at
each level of the tree, by using the variable and cut point that
resulted in the best Gini goodness-of-split value among all candi-
date variables. Then, trees with second, third, fourth, and fifth best
splits at the root node were grown, followed by trees in which the
second best split at one child node in the second level was
considered for each of the five trees generated in the previous step
from allowing the first to the fifth best split at the root node. The
rationale for this multiplicity of trees was as follows: (i) there was
frequently a small numerical difference in the goodness of split
statistic between two variables, whereas there could possibly be a
considerable difference in ultimate predictive performance of a
tree using a slightly less than optimal split at a given point in it; and
(ii) there was a priori evidence in the literature that elevated levels
of particular biomarkers, either alone or in combination, were
predictive of later life mortality and, thus, should be allowed as a
candidate predictor in a tree. Additional tree growing parameters
included the following: (i) a node could be split only if it contained
20 or more participants; (ii) a terminal node had to include 10 or
more participants; and (iii) the maximum number of levels to which
a tree could be grown was five. These parameters ensured that a
given risk pathway described combinations of biomarkers that
indicated high mortality risk for a significant number of participants
(for at least �5% of the subsample) and that produced tree

pathways were not too complex (i.e., did not have more than five
biomarkers in a risk pathway).

In a given tree, a pathway into a terminal node (i.e., a specific
combination of biomarker cut points) with a mortality rate �70%
in males and �60% in females was defined as a set of HR
conditions. A cutoff of 70% for males was selected because it was
substantially above the overall mortality rate for men at 12 years
beyond baseline (50.9%); a lower cutoff of 60% for females was
selected because of the lower mortality rate (28%) in women. A
prediction rule for mortality, using a single tree, was specified as
follows: predict dead within 12 years of baseline if the individual has
biomarker conditions as specified by a pathway into a terminal node
with mortality rate �70% (males) or �60% (females).
Selection of trees to build a forest. Trees were selected from each
subsample and retained for possible inclusion in a final prediction
instrument if (i) a substantial proportion of participants (at least
20% of males and 10% of females) were represented in HR
terminal nodes (actual range of proportion of males � 23.5–51.1%;
actual range of proportion of females � 11.8–14.1%); (ii) a diversity
of biomarkers entered at least once in the pathways to HR nodes;
(iii) a chosen tree was not a mere duplicate of another tree chosen
to be included in the forest; and (iv) there were very few, if any,
biomarker conditions implying low-risk according to conventional
biomedical criteria in a HR pathway. Although our tree-growing
strategy allowed for up to 60 trees to be produced across the four
training samples for males and females, a smaller number of trees
that met tree-growing parameters were produced in the male and
female samples. A total of 52 trees were grown in the four training
samples for males. A set of 10 trees, with at least one coming from
each of the four training sample sets of trees, was selected to
represent the male forest. A smaller set of 20 trees was grown from
the four training samples for females. Only 3 trees were selected to
represent the final female forest. The small size of the female forest
is due to the low number of trees whose HR pathways were
interpretable as such, and for which there were substantial numbers
of women in the HR terminal nodes. The difficulty in identifying
many acceptable trees for the women’s forest is a consequence of
the fact that the 12-year mortality rate is low (28%), whereas we are
simultaneously trying to identify women with multiple HR condi-
tions (a relatively rare phenomenon in this population).
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