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INTRODUCTION  

We are pleased that Van de Rijt, Siegel, and Macy (VSM) have taken an interest 

in our work.  Since the publication of our article (Bruch and Mare 2006) we too have 

examined the role of random error in segregation dynamics and formally examined the 

relationship between residential preferences and segregation (Mare 2007; Tuljapurkar, 

Bruch, and Mare 2008).  We welcome the opportunity to discuss these issues, compare 

our conclusions to those of VSM, and extend our 2006 argument regarding the 

preferences of individuals and the dynamics of residential segregation.  We also 

acknowledge and present corrections of errors in our 2006 article.  In preparing our 

software for public release, we found an error in our computer code.  Our corrected 

results show that, as VSM point out, some of continuous functions for individuals’ 

decisions about whether and where to move that we originally claimed to generate 

integration in fact lead to segregation.  Our original findings regarding continuous 

functions with varying β parameters (Bruch and Mare 2006:692) were wrong.  This reply 

includes corrected versions of our simulations.  However, the error in our code 

notwithstanding, our original conclusions regarding the effects of the form of individual 

preferences on segregation dynamics are correct.  
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Our corrected software---including an executable file, the open-source Java code, 

and a suite of testing software for verifying key features of agent-based models---is 

publically available. 1  Our software can be extended to look at various dynamic 

processes (for example, marriage markets, peer effects, and the spread of innovation) and 

we encourage interested researchers to build upon our source code.  

Our 2006 article reported an investigation of the links between how people 

evaluate neighborhoods and aggregate segregation dynamics. We emphasized that the 

form of residential choice functions (that is, how individuals evaluate and choose 

neighborhoods) has important implications for segregation dynamics.  Simulations based 

on our corrected code show that, as VSM report, hypothetical monotonic, continuous 

functions with a sufficiently strong response to the racial makeup of a neighborhood (the 

coefficient β in the functions that describe residential choice) can generate segregation, 

and that empirical preference functions based on Detroit Area Study (DAS) data are 

consistent with high segregation.  However, our argument that “regions of indifference” 

across neighborhoods with varying ethnic composition (a key feature of threshold 

functions) play an important role in segregation dynamics still holds.  Moreover, as we 

show below, the shape of residential preference functions affects segregation dynamics 

through other pathways as well.  

Our reply first summarizes our ideas about preference functions and the effect of 

random variation on segregation dynamics, and then responds more directly to VSM’s 

comment.  We review the ways that randomness enters into choice processes and  argue 

that the shape of residential choice function -- for example, whether preferences follow a 

continuous or a threshold function -- affects segregation dynamics through three 

                                                 
1 All software and associated files are GPL licensed and open-source.  Software can be downloaded at 
http://www-personal.umich.edu/~ebruch/software/software.html.   
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pathways: the baseline level of randomness in the choice process, how random error 

fades out or cumulates over time, and the speed with which integrated communities 

converge to an equilibrium level of segregation.  Our corrected agent-based models 

produce the same patterns as the ones shown by VSM and we agree with them that 

continuous functions with a sufficiently high β can produce segregation. However, we 

believe that VSM’s claim that “sensitivity to chance” matters more than “sensitivity to 

change” is misleading because these are not separable dimensions of the choice function.  

Rather, these factors interact in a complex yet interpretable way.  We also show that, 

contrary to VSM’s claims, continuous functions with a sufficiently low randomness do 

not result in higher levels of segregation than threshold functions, although continuous 

functions do reach equilibrium more rapidly.   We also explain an important feature of 

VSM’s Figures C1 and C2, namely that, above a certain β value, the threshold functions 

appear less responsive than continuous functions to increases in β.  

 We then address the issue, raised by VSM, of how preferences for racial 

integration affect segregation.  We find VSM’s argument regarding “the paradox of 

strong versus weak preferences” unpersuasive.  VSM argue that stronger preferences for 

integration result in higher segregation when residential choice follows a continuous 

rather than threshold function, but we show that this conclusion is an artifact of VSM’s 

highly stylized specification of these functions.  VSM’s “paradox” occurs only under a 

narrow set of assumptions.  We show that preferences for integration expressed by black 

respondents in the DAS are consistent with very low segregation and offer a more 

plausible statement about the link between preferences for integration and segregation 

dynamics.  
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RANDOM AND SYSTEMATIC VARIATION IN SEGREGATION DYNAMICS 

Discrete Choice Models 

 Our approach to segregation dynamics is to assume that people’s evaluation of 

neighborhoods is consistent with a discrete choice model.  In the model, an individual (or 

household) selects a neighborhood on the basis of its relative desirability.  We typically 

observe only whether a particular neighborhood is chosen and not the actual desirability 

of that choice.  If ui1 denotes the desirability (utility) of neighborhood 1, and ui2  denotes 

the utility of neighborhood 2 for person i , and person i  selects neighborhood 1, then 

ui1 > ui2.  Although utility is unobserved, the effects of measured characteristics of 

neighborhoods that may affect their relative desirability can be estimated.  The utility of 

the jth neighborhood for the ith individual is a combination of systematic (observable) 

and random (unobservable) components: 

uij = μij + εij ,      (1) 

where μij  is a (weighted) combination of observed characteristics of neighborhood j, 

possibly interacted with characteristics of person i, and εij  is a random error term.  The 

random term includes unobserved characteristics of neighborhoods and heterogeneity 

among persons in how they evaluate neighborhoods.  

 The probability of choosing neighborhood k is the probability that the utility 

associated with k is greater than the utility associated with all other neighborhoods.  If yik  

= 1 if neighborhood k is chosen and 0 otherwise, 

Pr(yik =1) = Pr(uik > uij  for all j ≠ k)

= Pr(μik +εik > μij +εij  for all j ≠ k)

= Pr(μik −μij >εij −εik  for all j ≠ k)

    (2) 
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Thus, the probability of choosing one neighborhood over another depends on the relative 

sizes of neighborhood differences in the systematic and random components of utility.   

In a discrete choice model we cannot estimate the distribution of the random 

errors and thus, to identify the model, assume a fixed distribution forεij , typically an 

extreme-value distribution.  Given this assumption, one can estimate the coefficients for 

the observed variables that make up  and compute the probability of choosing each 

neighborhood using a conditional logit specification (McFadden 1974):  

Pr(yij =1 |μij ) =
eμ ij

eμ ik

k∈Ci

∑
     (3) 

where iCk ∈  denotes the neighborhoods available to the ith individual. 

 Equation 2 shows that the probability of choosing one neighborhood over another 

neighborhood depends on the relative size of the systematic and random differences 

between the two neighborhoods. The distribution of random differences among 

neighborhoods, εij , is fixed by assumption.2  But the distribution of systematic 

differences among neighborhoods depends on the functional form and coefficient values 

of the choice function. Changing the function effectively changes the ratio of “signal to 

noise” in the choice process.   

                                                 
2 An alternative way to identify the model is to assume a fixed distribution for the underlying utilities uij 
instead of the εij (Winship and Mare 1983).  This assumption results in a different scaling of the coefficients 
associated with the variables that contribute to μij, but does not affect the relationships shown in Equations 
(2) and (3). 



 6

Systematic and Random Variation in the Schelling and Bruch-Mare Models 

 In Schelling’s (1972, 1978) model, individuals prefer neighborhoods where the 

proportion of like neighbors is at least 50 percent.  In this model the utility for the ith 

individual from the jth neighborhood is 

uij = βXij      (4) 

where Xij =1 when the jth neighborhood has at least 50% neighbors of like color and is 0 

otherwise, and 1=β . The variance of the Schelling utility function is 

var(uij ) = β
2 var[Xij ] ,    (5) 

which implies that variation in utility depends entirely on systematic variation in 

neighborhood proportion own-group.3   Bruch and Mare (2006) propose several 

alternatives to Schelling’s original model, which are special cases of the discrete choice 

model shown in Equation 3 and are monotonic functions of the proportion of persons in 

an individual’s own group in each neighborhood.  The nonzero probability model is a 

threshold model in that individuals prefer areas that are at least 50% own group, although 

they have a nonzero probability of moving into any area. As with the Schelling model, 

individuals are indifferent to neighborhood changes that do not cross the 50% threshold. 

In this model the utility associated with the jth neighborhood is  

uij = βXij + εij ,      (6) 

                                                 
3 The Schelling model differs from the random utility models in several ways.  First, it has no residual in 
the utility function.  Although the actual choice of destination is probabilistic in that individuals randomly 
choose among acceptable destinations, these destinations are identical in their observed and unobserved 
characteristics. Second, the decision to leave one’s current location is treated differently from the decision 
to move to a new destination.  Individuals who are content in their current location, have zero probability of 
moving elsewhere, even for neighborhoods that exceed the threshold of 50% own group. Third, the 
function assigns a zero probability to all neighborhoods less than 50 percent own group. Agents never 
move to an undesirable neighborhood.  If no desirable neighborhood is available, the individual remains in 
his or her current neighborhood until one is available. 
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where Xij  is 1 when the neighborhood is at least 50% own group, and 0 otherwise.  In the 

linear continuous model, we allow individuals to respond to any small change in 

neighborhood composition. The utility associated with the linear continuous model is  

uij = βqij + εij ,      (7) 

where qij  is the proportion own-group in the neighborhood.  Because Xij  in Equation (6) 

is a function of qij , the proportion own-group in the neighborhood, we refer to both 

functions generally as f (qij ).   

 The variance of the utilities across neighborhoods depends on their systematic and 

random variation.  The more systematic variation among neighborhoods, the less likely 

that random error dominates the choice process.  The variance of utility in the discrete 

choice model is 

   (8) 

Because the error variance is fixed in this model, a bigger variance on the first term (the 

systematic component) means a larger ratio of signal to noise when evaluating 

neighborhoods.   Equation 8 shows that three factors that affect the ratio of systematic to 

random variation in the discrete choice models. First, an increase in β  leads to an 

increase in systematic variation of the utilities.  Second, the form of the function f affects 

the ratio of systematic to random variation because the variance of Xij  and qij  differ for a 

given neighborhood composition. Third, as we demonstrate more fully below, the 

distribution of neighborhood proportion own-group in the city, , affects the signal to 

noise ratio because the var[ f (qij )] term takes it as an argument.  

1. Functional Form and the Baseline Ratio of Systematic to Random Variation 
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The higher the coefficient β in discrete choice models, ceteris paribus, the higher 

the ratio of systematic to random variation in the choice process.  In the Schelling model, 

however, all variation is systematic.  Because the Schelling model contains no random 

variation, segregation dynamics produced by this choice function do not vary with β .   

This is illustrated in Figure 1, which shows that the time path of the index of dissimilarity 

for the Schelling model does not depend on β.   

[INSERT FIGURE 1 HERE] 

In contrast, in the threshold and continuous discrete choice models systematic and 

unobserved characteristics of neighborhoods affect neighborhood desirability.  Moreover, 

because of how neighborhood racial composition enters the utility and variance functions 

for a given β value and neighborhood composition, the variances of utility in the nonzero 

and continuous models also differ implying that the functions have different relative sizes 

of systematic and random components of variability.  Table 1 shows the systematic 

variance of the choice functions for different neighborhood distributions of proportion 

own-group. We compute the systematic variation implied by the continuous and 

threshold function for five hypothetical communities, each of which comprises ten 

neighborhoods:  (1) complete integration (all neighborhoods are 50% own-group); (2) 

complete segregation (all neighborhoods are 0% or 100% own-group); (3) uniform 

distribution of percent own-group (neighborhoods are 100,90,...,30,20,10 % own-group); 

(4) near segregation (neighborhoods are all 10% or 90% own-group); and (5) near 

integration (all neighborhoods are 40% or 60% own-group). Because the threshold 

function does not respond to changes in neighborhood composition that occur above and 

below the threshold, the variance of the threshold function is less sensitive to the 

distribution of proportion own-group. For both the continuous and threshold functions, 
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the systematic component is largest when neighborhoods are close to 0 or 100 percent 

own group. Where communities are well integrated, mobility decisions are almost 

completely determined by the random component of neighborhood desirability. With the 

exception of complete segregation and complete integration (where the continuous and 

threshold functions have the same systematic component), the threshold function always 

has a bigger systematic component of variance. The bottom panel of Table 1 shows that 

the relative amount of systematic variation for all functions varies directly with the size 

of β, but the differences in systematic variance across functional forms and neighborhood 

composition remain.4 For any β, the threshold function has a systematic variance 

component that is greater than or equal to the systematic variance component for the 

continuous function.  

 

2. Functional Form and the Cumulation of Randomness  

The second way that functional form affects the ratio of random to systematic 

variation in the choice process is through differences in how randomness builds or 

dampens out with time.  We argued that continuous functions may lead to lower levels of 

segregation than threshold functions because the continuous function is sensitive to very 

small changes in neighborhood composition, thus creating a “cascade toward integration” 

(Bruch and Mare 2006: 692-24).  Even a small number of individuals, who by chance 

move into areas with few own-group members, increase the desirability of those areas to 

                                                 
4  This demonstration assumes a fixed distribution of neighborhood characteristics. But proportion own-
group in neighborhoods (and thus var[ f (qij )] ) changes over time as a result of changing neighborhood 
composition.  When many neighborhoods are approximately 50% own-group, the variance of qij  is low for 
both the threshold and continuous functions and thus the contribution of systematic variation to individuals’ 
choices is low.  When segregation is high, the variance of all functions is higher, thereby placing greater 
weight on the systematic component (neighborhood proportion own-group) of residential mobility 
decisions.  
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members of their group, thereby increasing the probability that more own-group members 

subsequently move there. Threshold functions, in contrast, have large intervals of 

proportion own-group across which individuals are indifferent. Thus, a small number of 

individuals who move to an area with few own-group members are unlikely to increase 

the desirability of that area for future movers.  This argument is correct as far as it goes, 

but incomplete because it ignores the effect of random variation in this process.    

In the continuous function, this randomness cumulates whereas in the threshold 

function it does not.  As discussed above, the ratio of systematic to random variation in 

the model depends on functional form, the effect of race composition β , and race 

composition itself qij . For simplicity, imagine a community with two neighborhoods, one 

that is 100% black and one that is 100% white. An unlikely move of a white person into 

the black neighborhood slightly increases the proportion white in that area. This 

decreases to a small degree the variation in qij  (proportion own-group) across the two 

neighborhoods. The continuous function implies that individuals immediately respond to 

this decrease in the variance of qij , creating a corresponding reduction in the difference in 

utility between the minority and majority group neighborhood.  In the next time step, 

because the observed difference in the systematic part of utilities between neighborhoods 

has decreased slightly, the extent to which randomness affects the choice process has 

correspondingly increased.  This makes it more likely that another white person enters a 

majority black neighborhood, further decreasing the variance of qij . In the threshold 

model, individuals are insensitive to small changes in qij  provided that the change does 

not occur at the threshold point. Thus, small deviations from racial homogeneity do not 

decrease the relevant systematic differences between neighborhoods.   
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[INSERT FIGURE 2 HERE] 

 Figure 2 shows segregation dynamics under the nonzero and continuous functions 

for different values of β . The extent to which randomness cumulates in the continuous 

model depends on β .  Higher values of  produce higher levels of segregation for all 

functions. However, the threshold function is less responsive to increases in β  than the 

continuous function because the value of the latter function is more affected by random 

perturbations in choices. The continuous function registers a change in utility for any 

change in neighborhood composition. When β  is low, a few individuals may move to 

less desirable areas (with low probability), but this in turn affects the desirability of those 

areas in the next round, and this process cumulates in such a way as to create integration. 

However, when β  is high, a few individuals may move to less desirable areas, but the 

difference in utilities among neighborhood types is sufficiently large to keep random 

perturbation from cumulating with time.  The threshold function is less susceptible to 

randomness because a small change in neighborhood composition rarely registers a 

change in neighborhood desirability (except at the threshold point).  As a result, random 

perturbations tend not to have a cumulative effect on segregation. 
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3. Functional Form and Speed of Convergence to Equilibrium Segregation 

Functional form affects segregation dynamics in a third way when systematic 

factors dominate the choice process.  For very large values of β, the contribution of 

random error to the choice process is negligible.  That errors tend to “cumulate” in the 

continuous function is irrelevant, because the system has so little randomness.  Both the 

continuous and the threshold functions can, with a sufficiently large β, sustain a high 

level of segregation.  The two types of functions, however, differ in the speed at which an 

equilibrium level of segregation comes about.  With little noise in the choice function, 

individuals who follow a continuous function steadily gravitate towards increasingly 

homogeneous neighborhoods. For example, a person in a 60% own-group neighborhood 

is attracted to an 80% own-group neighborhood.  Individuals seek the highest proportion 

own-group neighborhoods that they can.  The result is a steady path to segregation.  

When individuals follow a threshold function, they are indifferent to 

neighborhoods above and below the threshold.  Regardless of β, those who live in 

satisfactory neighborhoods (greater than 50% own-group) are as likely to select a less 

homogenous as compared to a more homogeneous neighborhood so long as the 

neighborhoods are within the greater than 50% own-group range.  Individuals who 

already live in satisfactory neighborhoods do not, by their actions, contribute to further 

segregation.  The only individuals who contribute to further segregation under the 

threshold function are those who try to escape unsatisfactory areas. When individuals 

leave an area where their group is the local minority in favor of an area where they are in 

the majority, they increase segregation. Once these individuals move to a majority group 

neighborhood, they too move among neighborhoods where their own group is the local 

majority.  
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This explains why, for higher values of β, the continuous function segregates 

more quickly than the threshold function.  If individuals follow a continuous function, 

they gravitate to neighborhoods with ever higher percentages of persons in their own 

group; whereas if they follow a threshold function, they leave areas where they are the 

local minority, but move among all majority-group areas regardless of their exact racial 

makeup.  In the threshold model, only individuals who leave areas where they are the 

local minority raise the level of segregation.  Over time, a smaller and smaller number of 

individuals are in a position to increase segregation. Ultimately, all individuals who can 

leave an area where they are the local minority will do so, and (subject to availability 

constraints) this generates complete segregation in the threshold model.  But it takes 

longer to get there in the threshold model than in the continuous model.  

[INSERT FIGURE 3 HERE] 

Figure 3 illustrates how, at high β values (where randomness plays a trivial role in 

residential choice) functional form affects the rate at which neighborhoods segregate. It 

shows segregation levels for the continuous and threshold functions for two values of β 

simulated over 20 million time ticks.  When β = 55, the continuous function segregates 

faster than the threshold function, reaching maximum segregation at approximately 3 

million ticks and stabilizing thereafter.  Although we did not run the model to its exact 

equilibrium, the gap between the threshold and continuous functions shrinks steadily over 

time.  Eventually, the two segregation lines converge.  The dashed vertical line in Figure 

3 marks the implied segregation levels at 1,000,000 ticks, the duration of VSM’s 

simulations shown in their Figure C1.   At that point, the implied segregation level at β = 

55 is markedly higher for the continuous than the threshold function.  But VSM’s 

conclusion that the continuous function produces a higher segregation level is an artifact 
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of failing to run the simulations long enough.  The two functions eventually converge to 

the same level of segregation, albeit at different rates. 

Sensitivity to Chance or Sensitivity to Change?  

VSM (p. 5) claim that that high randomness (“sensitivity to chance”) matters 

more than functional form assumptions (“sensitivity to change”).  We have demonstrated 

the importance of functional form assumptions, even in conditions where there is little 

randomness.  We agree with VSM that the β coefficient (the strength of preferences) 

plays a key role in segregation dynamics, and acknowledge the error on this point in our 

original analysis. However, it is misleading to treat β as “sensitivity to chance” (the 

degree to which randomness defines the choice process) and functional form as 

determining “sensitivity to change,” and to focus on a comparison of the relative sizes of 

these effects.  Both factors affect the relationship between systematic and random 

variation in the model and do so in an interactive way.  When the amount of randomness 

in the choice process is small, the continuous function leads to a much faster rate of 

segregation than the threshold function, but both functions produce a high level of 

segregation.  VSM’s conclusion that continuous functions yield more segregation is an 

artifact of running their simulations for too few time steps.   

Finally, both our analyses and those in VSM show that the threshold function is 

less responsive to changes in β.   The threshold function is more robust to changes in the 

ratio of systematic to random variation in choices, both because the threshold function 

has less random variation relative to systematic variation to begin with, and also because 

randomness in the choice process does not cumulate in the threshold function.  At low 

values of β, the threshold function leads to a much higher level of segregation than the 
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continuous function.  For higher β values, the continuous function segregates faster than 

the threshold function. 

 

PREFERENCES FOR INTEGRATION AND SEGREGATION DYNAMICS 

The corrected results presented above show that continuous functions can 

generate segregation, even for relatively low β values.  Figure 4 is a correction of Figure 

6 from our 2006 paper and shows the levels of segregation implied by the preferences 

expressed through responses to neighborhood vignettes by respondents to the 1992 DAS.  

In that survey, whites expressed a monotonically increasing preference for living in areas 

with more whites, whereas blacks expressed a preference for racially mixed areas.  The 

dotted line in the figure shows segregation levels implied by the race-specific responses.  

These empirically based preference functions are sufficient to generate a high level of 

segregation. It is useful to consider, however, whether whites alone are sustaining this 

high level of segregation. Figure 4 also shows simulation results under two hypothetical 

situations: (1) both blacks and whites have the ethnocentric own-group preferences 

demonstrated by Detroit whites (solid line), and (2) both blacks and whites have the 

preference for integration demonstrated by Detroit blacks (dashed line) (Bruch and Mare 

2006, Table 2).  If both blacks and whites had the own-group preferences of whites, a 

very high level of segregation would result.  But if both blacks and whites held blacks’ 

preference for mixed race neighborhoods, a very low level of segregation ( D ≈ 0.1) would 

result.   In short, blacks’ preferences for integration are consistent with a low level of 

segregation.  

How do blacks’ preferences for integration sustain segregation?  The results 

shown in Figure 4 reflect not just a preference for diversity on the part of blacks but also 
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their willingness to tolerate a range of diverse neighborhoods that makes integrated 

neighborhoods resilient to small perturbations in racial makeup.  Among DAS 

respondents, at least 85 percent of blacks were willing to live in neighborhoods between 

29-86 percent white (Bruch and Mare 2006, Table 1).  Whereas preferences for these 

neighborhoods vary somewhat, the empirical function approximates a “region of 

indifference” among neighborhoods with widely varying racial makeup.  Our analysis of 

threshold functions reveals that regions of indifference in a preference function prevent 

random perturbations from destabilizing residential patterns. What remains unknown is 

how large a region of indifference (or relative indifference) is needed to sustain 

integration. This is a good topic for future study.   

The “Paradox” of Strong vs. Weak Preferences 

What accounts for the discrepancy between our empirical results about preference 

for integration and VSM’s simulation results, which, they argue, show that integrationist 

preferences lead to segregation?  The answer lies in the different shapes of our empirical 

and their hypothetical preference functions.   The DAS black respondents were relatively 

indifferent over a range of integrated neighborhoods.  The DAS data suggest that African 

Americans would be satisfied with integrated areas between 40 and 60 percent own 

group.  But this is in sharp contrast to the assumptions made in VSM’s “continuous” 

function (described in their footnote 8).  Figure 5 plots the VSM continuous function for 

various values of β.  Whereas individuals who follow this function do prefer integrated 

neighborhoods, only a neighborhood of exactly 50% own-group neighbors is fully 

satisfactory.  In addition, all neighborhoods above the 50% own-group mark are 

considered more satisfactory than neighborhoods that are an equal percentage below 
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50%.5   The VSM function has an unusually sharp peak, which contains no stable range 

of heterogeneous neighborhoods, combined with an asymmetry that favors 

neighborhoods with a higher percentage own-group.  This shape dictates VSM’s results; 

to wit, that integrated neighborhoods are highly unstable and, ceteris paribus, individuals 

tend to choose neighborhoods with relatively more members of their own group.  All 

persons have a strong incentive to move into the highly desirable 50% own-group 

neighborhood. Unfortunately, even one person moving into a perfectly integrated area 

immediately destabilizes that neighborhood.   Ironically, for VSM, increasing the 

“strength of integrationist preferences” (P. XXXX) amounts to increasing the peakedness 

of the preference function, which makes living in a 50/50 or nearly 50/50 neighborhood 

harder to attain.  VSM argue that increasing β increases the “strength” of multiethnic 

preferences, but, because of the asymmetry of the function, it actually increases the 

desirability of majority group areas relative to minority group areas.   

VSM argue that there is a “paradox of strong versus weak preferences: when 

ethnic preferences are sufficiently weak relative to chance, sensitivity to change can lead 

to greater integration in a population that prefers segregation, and when ethnic 

preferences are sufficiently strong, sensitivity to change can lead to greater segregation in 

a population that prefers diversity” (p. XXXX).  We see no paradox.  The horse race 

between the “threshold” and “continuous” preference for integration is too stylized to be 

informative.  VSM’s continuous function does not lead to integration because the 

preference for integrated neighborhoods is so highly concentrated on 50/50 

neighborhoods.  Readers should be skeptical of the generality of VSM’s result.  Our 

                                                 
5 A 51 percent own group neighborhood is considered more desirable than a 49 percent own group 
neighborhood, a 55 percent own-group neighborhood is considered more desirable than a 45 percent own-
group neighborhood, and so forth.  This pattern is not evident in VSM’s Figure C3, which does not 
represent the actual nonlinearity of the function. 
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function for DAS blacks, which would, if shared by both races, generate integration, 

provides some empirical grounds for skepticism.   

CONCLUSION  

 We have corrected errors in our 2006 article and reassessed our prior claims in 

light of these errors.  We acknowledge that realistic preferences can result in high levels 

of segregation, a change from our previous conclusion.  We also acknowledge that 

monotonic continuous functions with a sufficiently high β can lead to segregation.  

However, our original analysis of the role of functional form (that is, how people respond 

to neighborhood characteristics) in segregation dynamics is correct, albeit incomplete.   

Functional form affects segregation dynamics: (1) via the baseline ratio of systematic to 

random variation in the choice process; (2) via whether or not randomness “cumulates” 

over time; and, (3) when random variation is small, via the time it takes to reach an 

equilibrium level of segregation.   Because functional form and the strength of residential 

preferences interact in a complex way, it is misleading to focus on whether one or the 

other has a bigger effect on segregation.  Although it was not the focus of our 2006 

article, we have also examined how integrationist preferences affect segregation 

dynamics.  If both blacks and whites had blacks’ preferences for integration, ceteris 

paribus, segregation would be low.  Both continuous and threshold functions can lead to 

integration so long as individuals are relatively indifferent among a range of integrated 

neighborhoods.  This ensures that integration is robust to small changes in neighborhood 

composition.  

Our focus on technical issues relating to neighborhood preferences and 

segregation dynamics notwithstanding, these issues boil down to competing ideas about 

the rules that govern the behavior of individuals and the distribution of populations.  
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Threshold and continuous response functions may lead to different levels of segregation 

even when the average level of tolerance is the same. When preferences are mild (β < 5) 

the threshold function generates higher segregation than the continuous function. When 

preferences are strong (β  > 5) both functions generate high segregation and the rate of 

convergence to segregation is faster for the continuous function.  Functional form 

matters, at both low and high levels of randomness.   

 From the standpoint of the analyst, how much randomness enters into processes 

of residential choice depends on how completely one enumerates the systematic 

properties of neighborhoods, on the variation across individuals in how these properties 

are evaluated, and on features of the community.  The ethnic makeup of a neighborhood 

is of great interest to social scientists, but it is only one of many characteristics that affect 

how attractive a place is to prospective residents.  For example, neighborhoods may vary 

by air quality and proximity to the beach as well as ethnic makeup, all of which affect 

their relative desirability.  If included in an analysis of residential choice, these 

characteristics contribute to systematic variation; if omitted, they contribute to 

randomness.  Even if these characteristics are measured, individuals may vary in how 

much weight they place on these characteristics.  To some extent we can capture 

differences in individual preferences with such simple rules of thumb as that blacks and 

whites place different (and opposite) weights on the percentage of neighborhood 

residents who are black.  But this is an oversimplified representation of preference 

heterogeneity across individuals, who vary in their racial tolerance and tastes for 

neighborhood amenities.  Unmeasured heterogeneity in preferences, therefore, 

contributes further random variation to the choice process.  Threshold and continuous 

functions imply different responses to this heterogeneity in population and neighborhood 
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characteristics.  Furthermore, communities with more diversity among people and 

neighborhoods may have different levels of segregation from areas with lower diversity.  

These effects of diversity depend on the behavioral rules that link neighborhood 

characteristics and individual actions. 
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Table 1. Variance of Nonzero (threshold) and Continuous Function for 10 Neighborhoods

Mean Variance Min Max
Integrated 0.5 0.000 0.5 0.5
Segregated 0.5 0.278 0 1
Uniform 0.55 0.092 0.1 1
Almost Segregated 0.5 0.225 0.05 0.95
Almost Integrated 0.5 0.003 0.45 0.55

β  = 1 Mean Variance Min Max
Integrated 1.0 0.000 1 1
Segregated 0.5 0.278 0 1
Uniform 0.6 0.267 0 1
Almost Segregated 0.5 0.278 0 1
Almost Integrated 0.5 0.278 0 1

β  = 2
Integrated 2.0 0.000 2 2
Segregated 1.0 1.111 0 2
Uniform 1.2 1.067 0 2
Almost Segregated 1.0 1.111 0 2
Almost Integrated 1.0 1.111 0 2

β  = 1 Mean Variance Min Max
Integrated 0.5 0.000 0.5 0.5
Segregated 0.5 0.278 0 1
Uniform 0.55 0.092 0.1 1
Almost Segregated 0.5 0.225 0.05 0.95
Almost Integrated 0.5 0.003 0.45 0.55

β  = 2
Integrated 1 0.000 1 1
Segregated 1 1.111 0 2
Uniform 1.1 0.367 0.2 2
Almost Segregated 1 0.900 0.1 1.9
Almost Integrated 1 0.011 0.9 1.1

Neighborhods  

Threshold Utilities

Continuous Utilities



Figure 1. Schelling Model with Varying Betas 
 

 
 
 



 Figure 2.  Segregation Outcomes for Nonzero (threshold) and Continuous 
Functions, Varying Beta, 1 million iterations 
 

 
 



Figure 3. Illustration of Convergence in Threshold and Continuous Functions for 
High Beta Values, 15 million iterations 
 

 
 



  
Figure 4. Segregation Outcomes, DAS preferences, and hypothetical preferences 
 



Figure 5. Illustrations of Van de Rijt, Macy, and Siegel (2008) Continuous 
“Multiculturalists’” Preference Function1 
 

 

                                                 
1 Note that the interval of proportion own group is divided into 24 intervals, to correspond to the size of the 
neighborhoods in our agent-based models. Each neighborhood can hold a maximum of 25 agents.  


