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Abstract 
 

This paper studies the sources of agglomeration economies in cities.  We  begin     
by incorporating within and cross-industry spillovers into a dynamic spatial 
equilibrium  model  in  order  to  obtain  a  panel  data  estimating  equation.  This 
gives us a framework for measuring a rich set of agglomeration forces while 
controlling for a variety of potentially confounding effects.  We  apply  this  es- 
timation  strategy  to  detailed  new  data  describing  the  industry  composition  of 
31 English cities from 1851-1911. Our results show that industries grew more 
rapidly in cities where they  had  more  local  suppliers  or  other  occupationally- 
similar industries. We find no evidence of dynamic within-industry effects, i.e., 
industries generally did not grow more rapidly in cities in which they were al-  
ready large.  Once we  control for these agglomeration forces, we  find evidence     
of strong dynamic congestion forces related to city size. We also show how to 
construct estimates of the combined strength of the many agglomeration forces      
in our model. These results suggest a lower bound estimate of the strength of 
agglomeration forces equivalent to a city-size divergence  rate  of  1.0-2.3%  per 
decade.  JEL Codes:  R1, N93, O3 
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1 Introduction 
 
What are the key factors driving city growth over the long term? One of the leading 
answers to this question, dating back to Marshall (1890), is that firms may benefit 
from proximity to one another through agglomeration economies. While compelling, 
this explanation raises further questions about the nature of these agglomeration 
economies. Do firms primarily benefit from proximity to other firms in the same 
industry, or, as suggested by Jacobs (1969), is proximity to other related industries 
more important? How do these forces vary across industries?  What role does city  
size play in industry growth? How can we separate all of these features from the fixed 
locational advantages of cities? These are important questions for our understanding 
of cities. Their answers also have implications for the design of place-based policies, 
which can top $80 billion per year in the U.S. and are also widely used in other 
countries.1 

Not surprisingly, there is a large body of existing research exploring the nature    
of agglomeration economies. This study builds on two important strands of this 
literature.2 One approach uses long-differences in the growth of city-industries over 
time and relates them to rough measures of initial conditions in a city, such as an 
industry’s share of city employment or the Herfindahl index over major city-industries 
(Glaeser et al. (1992), Henderson et al. (1995)). The main concern with this line of 
research is that it ignores much of the richness and heterogeneity that are likely to 
characterize agglomeration economies. A more recent approach allows for a richer set 
of inter-industry relationships using connection matrices based on input-output flows, 
labor force similarity, or technology spillovers. These connections are then compared 
to a cross-section of industry locations (Rosenthal & Strange (2001),  Ellison    et  al. 

1The New York Times has  constructed  a  database  of  incentives  awarded  by  cities,  coun- 
ties and states to attract companies to locate in their area. The database is available at 
http://www.nytimes.com/interactive/2012/12/01/us/government-incentives.html. 

2There are several other strands of the agglomeration literature which are less directly related to 
this paper. One strand focuses on addressing identification issues by comparing outcomes in similar 
locations, where some locations receive a plausibly exogenous shock to the level of local economic 
activity (Greenstone et al. (2010) and Kline & Moretti (2013)).  This approach has the advantage       
of more cleanly identifying the causal impact of changes in local economic activity, but it may also    
be less generalizable and more difficult to apply to policy analysis.  Thus, we view this line of work   
as complementary to our approach. Other alternative approaches use individual-level wage data 
(Glaeser & Mar (2001), Combes et al. (2008), Combes et al. (2011)) or firm-level data (Dumais      
et al. (2002), Rosenthal & Strange (2003), Combes et al. (2012)) to investigate the effects of city 
size. See Rosenthal & Strange (2004) and Combes & Gobillon (2015) for reviews of this literature. 

http://www.nytimes.com/interactive/2012/12/01/us/government-incentives.html
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(2010), Faggio et  al.  (2013)).3  A limitation of this type of static exercise is that it is  
more difficult to control for locational fundamentals in cross-sectional regressions. 

Our approach builds on these previous studies, but also seeks to address some of 
the remaining issues facing the literature. Specifically, this study contributes to the 
existing literature in five ways. First, while this is primarily an empirical paper, we be- 
gin by introducing a new dynamic spatial equilibrium model of city-industry growth. 
This model incorporates a rich set of within- and cross-industry spillover effects, 
which allows us to ground our study of these agglomeration forces in a theoretically- 
consistent framework.4 

Second, motivated by the theory, we introduce a panel-data econometric approach 
for estimating the magnitude of agglomeration forces.5 The key feature of our ap- 
proach is that we are able to estimate the importance of dynamic agglomeration  
forces related to industry scale, cross-industry connections, and city-size in a uni-  
fied framework, while dealing with fixed locational fundamentals and time-varying 
industry-specific shocks. Previous research has examined these elements separately, 
but we  are not aware of existing work that studies all of these effects in a unified  
way.  In addition, the use of panel data offers some well-known advantages relative   
to the cross-sectional or long-difference methods used in most existing work. How- 
ever, applying this approach to study agglomeration economies requires overcoming 
challenges related to identification and correlated errors. Our study makes progress  
in this direction, allowing us to address some of the identification concerns present in 
previous work. The approach that we develop can potentially be applied in a wide 
range of settings in which consistent panels of city-industry employment data can be 
constructed. 

Third, to implement our approach, we construct a rich dataset describing the 
evolution of city-industry employment over six decades.6   These new data, which  we 

3These studies are part of a broader literature looking at the impact of inter-industry connections, 
particularly through input-output linkages, that includes work by Amiti & Cameron (2007) and 
Lopez & Sudekum (2009). 

4In a recent handbook chapter, Combes & Gobillon (2015) highlight the need to ground empirical 
studies of agglomeration economies in  theory. 

5Our panel data approach builds on previous work by Henderson (1997) and Dumais et al. (1997). 
See also Combes (2000) and Dekle (2002). A panel data approach is also used in a recent working 
paper by  Lee (2015) which uses data on U.S. manufacturing industries from 1880-1990 to study  
static  agglomeration forces. 

6The availability of detailed long-run city-industry data has been a major impediment to previous 
work on agglomeration economies.  The database constructed in this study helps address this defi- 
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digitized from original sources, cover 31 of the largest English cities (based on 1851 
population) for the period 1851-1911. This empirical setting offers several important 
advantages. One advantage is the very limited level of government regulation and 
interference in the British economy during this period due to the strong free-market 
ideology that dominated British policymaking and the small size of the central gov- 
ernment.7 A second important advantage is that we are able to study agglomeration 
using consistent data over many decades. Studying agglomeration over a long time 
period is desirable because the time needed to build new housing, factories, and in- 
frastructure means that it may take years for cities to respond to changes in local 
productivity levels. Our data are also quite detailed; they come from a full census  
and cover nearly the entire private sector economy, including manufacturing, trans- 
portation, retail, and services. A third advantage is that we are able to study a long-
established urban system. This contrasts with the U.S., where the open western 
frontier meant that the U.S. city system was in transition until the middle of the 20th 
century.8 Our setting was also characterized by a relatively open economy with high 
levels of migration into and between cities.9 

Fourth, we provide new results on the strength of different types of agglomeration 
and congestion forces for one empirical setting. We find that (1) cross-industry effects 
were important, and occurred largely through the presence of local suppliers and oc- 
cupationally similar labor pools, (2) the net effect of within-industry agglomeration 
forces was generally negative, and (3) city size had a clear negative relationship to 
city growth. The presence of local buyers appears to have had little positive influence 
on city-industry growth.      We  provide a variety of tests examining the robustness of 

ciency. Recently, other databases of this type have been developed using data from the U.S. County 
Business Patterns survey by Duranton et al. (2014) and from the U.S. Census of Manufacturers by 
Lee (2015) and others. 

7This contrasts with modern settings, where the list of confounding factors includes place-based 
government policies, local land-use regulations such as zoning,  environmental policies that vary 
across locations, local tax incentives, variation in the local burden of national taxation, as well as  
many other types of regulation.  These factors can also affect city growth,  making it more difficult     
to identify and quantify the role of agglomeration forces. To cite some examples, Kline & Moretti 
(2013) describe the impact of place-based government policies in the U.S. The role of local land       
use regulations is highlighted by  Gyourko et al. (2008).  Local environmental policies are studied   
by Henderson (1996) and Chay & Greenstone (2005), among others. Greenstone & Moretti (2003) 
describe the impact of local tax incentives, while Albouy (2009) describes how federal tax incentives 
distort  urban  growth. 

8See Desmet & Rappaport (Forthcoming).      In contrast, Dittmar (2011) finds that Zipf’s Law 
emerged in European cities between 1500 and 1800, well before the beginning of our study period.  

9See, e.g., Baines (1994) and Long & Ferrie   (2004). 
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these results. For example, we show that our main results are robust to dropping 
particular cities or particular industries. They are also robust to using an alternative 
set of matrices measuring cross-industry connections, alternative functional forms for 
modeling spillovers, or alternative industry definitions. We also show that incorpo- 
rating cross-city effects, such as market potential or cross-city industry spillovers, has 
little impact on our  results. 

Fifth, we introduce an approach for measuring the combined strength of the many 
cross-industry agglomeration forces represented in our model. This is valuable because 
it provides a convenient way to assess the aggregate strength of these effects and may 
be useful for studying how these effects vary in different circumstances. Our results 
suggest that a lower-bound estimate of the agglomeration forces captured by our 
empirical model are equivalent to a decadal city-size divergence rate of 1.0-2.3%. To 
our knowledge this is the first paper to show how the combined strength of these 
many cross-industry connections can be measured. 

The next section presents our theoretical framework, while Section 3 describes the 
data. The empirical approach is discussed in Section 4. Section 5 presents the main 
results, while Section 6 examines the impact of city size and shows how this can be 
used to calculate the aggregate strength of the agglomeration forces in our model. 
Section 7 concludes. 

 
 
 
2 Theory 

 
While this paper is primarily empirical, a theoretical model is useful in disciplining the 
empirical specification. Grounding our analysis in theory can also help us interpret 
the results while being transparent about potential   concerns. 

Our theory focuses on dynamic agglomeration, i.e., localized spillovers that affect 
technology and thereby influence industry growth rates. In this respect it is related to 
the endogenous growth literature (e.g., Romer (1986)) and in particular, to the work 
of Lucas (1988), who emphasized the important role that localized learning in cities 
was likely to play in economic growth. This is not the only potential agglomeration 
force that may lie behind our results; alternative models may yield an estimation 
equation  that  matches  the  one  we  apply.   However,  because  we  are  interested in 
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dynamic agglomeration, focusing on technology growth is a natural starting point.10 

The model is dynamic in discrete time.  Technology advances over time as a result 
of two  forces.   First,  firms undertake R&D in order to improve their     productivity. 
Second, some of the new innovations produced by R&D undertaken by one firm spill 
over to affect other local firms. These spillovers can occur both within and across 
industries and the extent of the spillovers depends on a matrix of parameters reflecting 
the strength of within and inter-industry connections.  These spillovers are external   
to firms, so they will not influence the static allocation of economic  activity. 

At the end of each period, technology diffuses across firms in the same city and in- 
dustry. This approach, which follows Desmet & Rossi-Hansberg (2014), substantially 
simplifies the dynamic elements of the model because firm R&D decisions will only 
affect firm profits in the current period. By simplifying the dynamics in this way, we 
are able to build a tractable model with a rich set of inter-industry connections. 

As is standard in urban theories, we assume that goods are freely traded across 
locations and workers are free to move between cities. To keep things simple, our 
baseline model omits some additional features, such as savings and capital investment, 
or intermediate inputs, that one might want  to   consider.11 

We begin by solving the allocation of employment across space in a particular 
period. We then consider how the allocation in one period affects the evolution of 
technology and, thus, the allocation of employment in the next period, through knowl- 
edge spillovers. Most of the interesting features of the model are on the producer’s 
side, but we begin with a very brief introduction of the   consumers. 

 
 
 
 
 
 
 

10An alternative  approach is  to study  static  agglomeration,  i.e.,  how the  level  of employment in  
one industry affects the level of employment in another, or alternatively, how growth in one industry 
affects growth in another.  Some discussion of static vs.  dynamic agglomeration forces is provided    
in Combes & Gobillon (2015). Lee (2015) provides a recent example of a study focusing on static 
agglomeration forces. He finds that static localized inter-industry spillovers were small and declining 
in the U.S. across the 20th century.  This suggests that static agglomeration forces are unlikely to       
be behind the growth of cities during this    period. 

11In the Appendix, we explore the impact of adding capital or intermediate goods. In general this 
does not change the basic estimating equation that we obtain as long as we maintain the assumption 
of free mobility across locations, though it can change the interpretation of the parameter estimates. 
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2.1 Consumption 
 

The model is populated by two types of agents, workers and landlords. There is a con- 
tinuum of workers in the model, each endowed with one unit of labor. Workers have 
the option of paying a fixed cost, in terms of labor, in order to become entrepreneurs 
and open up their own firm. The utility function for both workers and landlords is,  U  
=     ∞t=0 ute−ρt   where  ut   is  utility  in  period  t.  There  is  no  saving,  so  utility  is 
maximized period-by-period.12 Utility in any period depends on consumption of real 
estate hct  and a composite of goods Gct  according to a Cobb-Douglas utility function: 

 

ut = hν G1−ν 
 

(1) 
ct    ct 

 

where ν ∈ (0, 1). There are i types of goods available, each produced by a separate 
industry,  and consumers have  CES preferences over  these goods,     so, 

 
        σ  

Gct = γix 
i 

o  1 
σ 

ict 

σ−1 

 

where xict  is consumption of type i goods by a consumer in city c, σ is the elasticity  
of substitution across goods and γi > 0 is a demand shifter for industry i. The 
corresponding price index, Pt takes the standard form, with the price of each type of 
good denoted by pit. Note that, with free trade, goods prices are not indexed by c.  
The index of goods prices is normalized to Pt  = 1.  The price of housing is denoted  
by qct. Consumers maximize their utility subject to their budget constraint. This 
utility maximization problem yields the expected demand equations for goods and 
real estate. 

Workers have access to a time-varying outside option utility vt
∗.  We can think of 

this as the utility offered by remaining in the rural sector or immigrating to another 
country. In equilibrium, this implies that the indirect utility function of workers must 
satisfy, 

 

Vct  = ln(wct) − ν ln(qct) = vt
∗ . (2) 

 
12Adding savings would complicate the model, but as long as capital is mobile across locations        

it will not alter our basic estimating equation, nor will it influence our empirical results, which are 
derived from a comparison across locations within a    country. 

− 、 
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Landlords receive income from land and other local resources. To keep things 

simple, we think of these landlords as living outside of the cities we   study. 
 
 
 
2.2 Production 

 
Workers can decide to become entrepreneurs by paying a fixed cost F , denominated 
in units of labor, to open a firm. The measure of firms in a city-industry is denoted  
by nict. We think of firms in a city as being started by workers from that city in the 
previous period, so if they enter in industry i they begin with the initial technology 
level available in that industry in that city, denoted āicf t.  Firms then invest in R&D 
to obtain a new technology level, aicft, which is used in   production. 

Firms compete on perfectly competitive input and output markets. The produc- 
tion function for firm f in industry i and city c is, 

 
yicft = aicftLα1

 
α2 
icft 

β 
icft E

1−α1−α2−β , (3) 
 

where aicft is technology, Licft is labor input, Ricft is the resource input, Hicft is real 
estate input, Eicft  is entrepreneurial effort, α1 + α2 + β < 1, and α1, α2, β > 0. 

Entrepreneurial effort is supplied by workers who choose to open a firm. Each 
entrepreneur has access to only one unit of entrepreneurial effort, so in equilibrium 
Eicft = 1 for all firms. This reflects a span-of-control limitation for firm owners.13 

This span-of-control limitation plays an important role in the model; by introducing 
decreasing returns to scale at the firm level it pins down firm size. As we will see, this 
implies that growth in city-industry employment is driven by growth in the number 
of firms. 

Labor is the only production input that is mobile across locations.14  Including  
real estate in the production function is not central to the model but is done for 
completeness. 

 
13Note that entrepreneurs are not required to trade off entrepreneurial effort against labor effort. 

Instead, all workers have access to one unit of each type of input, but entrepreneurial effort can only 
be used by workers that choose to open a firm. 

14Adding additional mobile inputs, such as capital, would not substantially affect the estimating 
equation that we obtain. 

H R 
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2.3 Land and natural  endowments 
 
 
Locational fundamentals play a central role in the debate over the determinants of  
city size, so it is important that they be incorporated into the theory (see, e.g., Davis 
& Weinstein (2002)).  In our model, locational fundamentals are represented by fixed 
industry-specific  city  resource  endowments,  R̄ic.15     In  equilibrium,  the  markets  for 
local resources clear, so    nict  Ricftdf  = R̄ic.  Resources play an important role in the 
model; by introducing decreasing returns at the city-industry level, they allow firms  
in the same industry to be active in many locations with different technology levels, 
even when trade is free, labor is mobile, and firms are perfectly competitive. They  
are also important in the context of the empirical analysis, because they make the 
impact of locational fundamentals in the estimation strategy   explicit. 

Real estate, which is used by both workers and firms, represents a congestion 
force in our theory. We model the price of real estate as an increasing function of the 
number of workers in a city and the amount of land used by   producers: 

qct  = f Lct, 
、、

Hicft  . (4) 

For our purposes, it is not necessary that we take a stand on the particular functional 
form of this relationship. 

 
 
2.4 Timing 

 
Figure 1 describes the timing in the model.  At the beginning of each period, firms    
in the same city-industry share a common and observable technology level denoted 
āicf t.  Given these, workers choose where to locate and whether to pay a fixed cost to 
become an entrepreneur and open a firm. After workers have moved and firms have 
opened, firms then choose a level of R&D investment and realize a new technology 
level aicft. Once technology is realized, firms choose how many workers and other 
inputs to hire and they produce and sell their outputs. At the end of the period, 
technology diffusion and technology spillovers occur, leading each firm to attain a 

 

15This approach follows Jones (1975) and has recently been used to study the regional effects of 
international trade  by  Kovak  (2013) and  Dix-Carneiro &  Kovak (2015). 

i f 
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w 1 q 2 r 1−α1 −α2 −β 1 1 

    ct    ct   ict 

αα1 αα2 ββ 

1 2 w 1 q 2 1−α1 −α2 1 ict 1 1−α1 −α2 

1 2 

 
new technology level āicf t+1.  The static portion of the model is solved by starting at 
Stage 3 and solving backwards. 

 
Figure 1: Model timing 

 

 
 
 
2.5 Production: Stage 3 

 
At the beginning of stage three, the number of workers in a city, Lct, the number of 
firms in a city-industry, nict, and the technology level available to each firm aicft have 
been determined. Given these, firms maximize profits by solving, 

 
max 

Licft,Hicft,Ricft 
pitaicftLα1

 
α2 
icft 

β 
icft − wctLicft − qctHicft − rictRicft 

 
where wct  is the wage and rict  is the price of local resources.  Since entrepreneurs   
will employ all of the entrepreneurial effort available to them, Eict is not included in 
this optimization problem. Using the first order conditions for this expression, gross 
profits – which are the returns to entrepreneurial effort excluding fixed costs of entry 
and R&D expenditures – are: 

 
/ α α 

 

  

β  \
  −1            

  
 

 

      
1 2 

 

Local resource market clearing allows us to solve for the rental  rate: 
 
 

−(1−α  −α  −β) 
/ 

   

α   α \  −1  /r n    

  

\ 1−α1 −α2 −β 
 

 (6) 
f =0 

p 1−α1 −α2 
it 

1−α1 −α2 

ic rict  = R̄ 

2 1 icft it = icft π 

− β) (5) 2 − α 1 p 1−α1 −α2 −β a 1−α1 −α2 −β (1 − α = icft π 

H R 
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(6) a 1−α1 −α2 −β df icft 
f =0 

p 1−α1 −α2 
it 

  ct   ct  

αα1 αα2 β1−α1 −α2 

1−α1 −α2 

ic rict  = R̄ 
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δ 1 1 wα1 qα2 rβ ct ct ict 

φicft 
icft it αα1 αα2 ββ 

        

 
 
 
 
 
 
 
 

2.6 Producers: Stage 2 
 

At the beginning of stage two, workers and firms have already made their location 
decisions and firms have access to an initial technology level āicf t.  Given these, firms 
must choose how much to invest in R&D to increase their productivity in order to 
maximize profits.  In doing so, they take into account the production decisions that  
we solved for above. 

When firms conduct R&D, they are choosing a technology multiplier φicft ≥ 0  
that increases their initial technology level according  to, 

 

aicft  = (1 + φicft)δ āicf t , (7) 
 
at a cost wct C φicft, where C is a parameter that determines the labor cost of inno- 
vation.16 We assume that δ < 1 − α1 − α2 − β so that the firm’s profit function is 
concave in the R&D investment level. 

Firms choose the innovation investment that maximizes gross profits less R&D 
expenses, 

/ \  −1  

  

  
 

 
 

subject to φicft ≥ 0. For now, assume that there is an interior solution to this problem, 
so that φicft  > 0.  In this case, the first order conditions for the firm’s problem can 
be used to obtain the following expression for the firm’s R&D decision, where the 
resource rent is substituted out using Eq.   6: 

 
 
 

16While we do not allow the R&D cost to vary by industry here, allowing an industry-specific cost 
parameter would not fundamentally alter our results. 

1−α1 −α2 −β 

max (1 + φicft) 1−α1 −α2 −β   ā 1−α1 −α2 −β p 1−α1 −α2 −β 

1−α1 −α2 −β 

max (1 + φicft) 1−α1 −α2 −β   ā 1−α1 −α2 −β p 1−α1 −α2 −β (1−α1−α2−β)−wctCφicft 
1 2 
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      α 
1 2 

n 
1 2 1 α2 β 

δ /

 \
q

α 

ct 

2 − 

 
 

(1 + φicft) = 

「/ δ \1−α1 −α2 −β 

 

 

 
āicf tR̄ 

 
β(1−α1 −α2 −β) 

1−α1 −α2 

ic 

 
(α2 −1)(1−α1 −α2 −β) 

1−α1 −α2 

ct 

 
1−α1 −α2 −β 
1−α1 −α2 

it 

 

(8) 

/ \ −(1−α  −α −β) /r \ −β(1−α −α −β) 
 

− 

 

   

 

1 
−   − − 

2 1−α1 −α2 
 

 

ict 

 
 

1 

a 1−α1 −α2 −β 

1−α1 −α2 

 

   

 

Recalling that 1 − δ − α1 − α2 − β > 0, this equation tells us that for an individual 
firm the optimal level of innovation is increasing in the firm’s initial technology level 
and the city-industry resource endowment. The level of innovation is decreasing in 
the cost of R&D, the wage level, and the amount of competition the firm faces for 
local resources, represented by the integral over the technology level of all other firms 
in the city-industry. 

Suppose for now that all firms in an industry start with the same initial tech- 
nology  level  āicf t.  Later,  we  will  see  that  this  is  the  case  given  how  the  technology 
diffusion process is modeled.17 In this case, firms in the industry will face the same 
R&D optimization problem, which implies that they will all choose the same R&D 
investment level, which we label φ∗

ict.  Firms will be aware of the R&D decisions made 
by other firms and will take this into account when making their own decisions. The 
R&D investment consistent with these expectations is found by substituting Eq. 7 
into Eq.  8 and solving to  obtain, 

 
(1 + φ∗

 

「 / \ 
 

 

 
1−α1 −α2 

 
āicf tR̄β

 

 
   1 

ct pit wα2 −1 n−β 

 
  1  
1−α1 −α2 −δ 

 
 

(9) 
ict C ic αα1 αα2 ct ict 

1 2 
 
 

This expression tells us that the level of innovation by  a firm is increasing in     
the firm’s initial technology level. At the same time it is decreasing in the number of 
firms in the same city-industry, which implies more competition for fixed city-industry 
resources. 

 
 
 
 
 
 
 

17To keep things simple, and because firm heterogeneity is not central to the exercise undertaken  in  

) = 

f =0 2 1 
f =0 αα1 αα2 

icft 
f =0 αα1 αα2 

q 

C 

α1 δ 

l 

w p 
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this paper, we have decided not to include within-industry firm heterogeneity in the model. However, 
firm heterogeneity could potentially be incorporated in a more sophisticated version of the model. 
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q 2 β 1 1 

1 − α1 − α2 − β − δ β 

¯ 

δ β 

p β ā β    Ric 

   
α2 −1 q 2 β 1 1 δ 1 − α1 − α2 − β − δ 

p β   Ric ā β            

−  

δ 

   
α2 −1 

 

2.7 Producers:  Stage 1 
 

Next, we consider the entry decisions of firms.  Any worker can choose to become   
an entrepreneur by  paying a fixed cost (in terms of labor) of F .   Because there is     
a large supply of potential entrants, ex post profits will be driven to zero. Thus, in 
equilibrium πicft − wctCφicft = wctF . Using this zero profit condition together with 
Eqs.  5, 6, and 9, we solve for the number of firms in a  city-industry: 

 
 

/ α \ −1 / 
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This, together with the first-order conditions from the firm’s problem in Stage 3, 

gives city-industry employment: 
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Together, Eqs. 10 and 11 imply the following relationship between the number of 
firms and the number of workers in a  city-industry, 

L = 
/
  α1(F − C) 
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Eq. 12 shows that growth in city-industry employment is driven entirely by growth 
in the number of firms. Eq. 10 can also be used, together with Eq. 9 to solve for the 
equilibrium level of R&D in the industry: 
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(13) 

This expression shows that firms’ R&D investments will depend only on model 
parameters,  a useful feature that simplifies the results.   So far we  have  solved     the 

model assuming that φict∗ > 0.  For this to hold, we need, F  > C   1−α1−α2−β 
、 
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18Note that the expression in parenthesis can be interpreted as the ratio of the gains from   addi- 
tional firms in an industry to the gains from improved technology in the industry.  For    industries 
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the remainder of this theory we assume that this condition is satisfied so that we have 
an interior solution to the firm’s R&D optimization problem and R&D occurs in all 
industries. 

 
 
2.8 Spillovers and technology diffusion 

 
At the end of a period, after production and consumption have taken place, firms are 
able to copy technology from other firms in the same industry (diffusion). However, 
because all firms in a given city-industry end the period with  the same technol-     
ogy level, the role of diffusion is simply to rule out strategic behavior. In addition, 
entrepreneurs may share ideas, and this recombination of ideas can increase their 
productivity (spillovers). Following Glaeser et al. (1992), we write the growth rate in 
technology at the city-industry level  as, 

 
ln 
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(14) 
 

where Sict−1 ≥ 1 represent the amount of spillovers available to a city-industry in a 
period.  This can include within-industry effects, cross-industry spillovers, as well  as 
national industry technology growth or city-level aggregate spillovers. 

We can use Eq. 14 to translate the growth in (unobservable) city-industry tech- 
nology into the growth of (observable) city-industry employment. Using Eq.  2, Eq.  
7, Eq.  11, and Eq.  14, we obtain, 
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where ζ is a constant function of model parameters. Note that by differencing we  
have eliminated the local resource endowment from this  equation. 

As a final step, we need to decide how to model the spillover term. Existing 
empirical evidence provides little guidance here, so we will opt for a fairly simple 

 

where the inequality above doesn’t hold, there will be no innovation. 
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approach.19 We  model the spillovers benefits to firms in industry i from R&D in  
local firms in industry k as a function of (1) the amount of new ideas produced in 
industry k, which is a function of the size of the technology advance made by each 
firm (1 + φ∗

kct), and the number of firms, nkct, and (2) the usefulness of these ideas to 
firms in industry i, given by parameter τki. Thus, there is a matrix of τki parameters 
representing the usefulness of an idea from industry k  to producers in industry i.   
The diagonal τii terms reflects within-industry spillovers.20 Given this, we write the 
spillover function as,21 

 
Sict = τki ln (nkct(1 + φkct)) + ξit + ψct. 

k 
 

Using Eqs.  12 and 13, this can be rewritten  as, 
 
 

Sict = τki ln(Lkct) + ξit + ψct + Γ 
k 

 
where Γ is a constant term.  Combining this with Eq.  15 we  obtain, 
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19In the empirical analysis we will investigate the robustness of our results to some   reasonable 

alternative formulations. 
20The intuition behind the within-industry spillovers in this model is that, while all firms achieve 

the same new technology level after undertaking R&D, this new level need not be achieved in exactly 
the same way. As a result, it may be possible for firms to achieve further gains by observing the 
different types of technologies developed by their competitors. However, the potential gains from 
within-industry spillovers will depend on a number of factors, such as the willingness for firms in an 
industry to share ideas with their direct local competitors. 

21Here we are assuming that city-industry resource endowments are such that nkct  1. This 
assumption allows us to express the spillover term in a slightly simpler way, but is not central to 
our results.  If we are worried that nkct can fall below one then we would instead write this as 
Sict = k τki ln (max(nkct(1 + φkct), 0)) + ξit + ψct. 

ii 
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where  the  constant  terms  have  been  gathered  into  Γ̃.   This  equation  expresses  the 
change in log employment in industry i and location c in terms of (1) within-industry 
spillovers generated by employment in industry i, (2) cross-industry spillovers, (3) 
national industry-specific factors that affect industry i in all locations, (4) city-specific 
factors that affect all industries in a location, and (5) aggregate changes in the outside 
option of workers that affect all industries in all  locations. 

This expression for city-industry growth will motivate our empirical specifica- 
tion.22 One feature that is worth noting here is that we have two factors, city-level 
aggregate spillovers ψct and city congestion costs qct, both of which vary at the city- 
year level. Empirically we will not be able to separate these positive and negative 
effects and so we will only be able to identify their net impact. Similarly, we cannot 
separate positive and negative effects that vary at the industry-year    level. 

Note that in the absence of spillovers, and with common technologies across loca- 
tions, the city size distribution in this model will be determined by the distribution of 
local resource endowments. Once local technology spillovers are added, city sizes will 
be determined by a combination of the initial resource endowment and the evolving 
technology levels. This hybrid of locational fundamentals and increasing returns is 
consistent with some existing empirical results (e.g., Davis & Weinstein (2002) and 
Bleakley & Lin (2012)). Once spillovers are included, the dynamics of the system are 
complex and depend crucially on the matrix of τki parameters.23 Estimating these 
parameters is the goal of our empirical exercise, which we turn to   next. 

 
 
 
 
 
 
 
 

22There are at least two promising alternative theories that may yield an empirical  specification 
similar to the expression generated by our model.  One such theory could combine static inter-  
industry connections, such as pecuniary spillovers through intermediate-goods sales, with changing 
transport costs. A second alternative combines static agglomeration forces  with  a  friction  that 
results in a slow transition towards a static equilibrium.   Our empirical exercises cannot make a   
sharp distinction between the mechanisms described in our framework and these alternatives,  so    
they should not be interpreted as a direct test of the particular agglomeration mechanism described    
by  the theory. 

23In addition, the dynamics are likely to depend crucially on city-size congestion forces, which 
are not fully modeled here. Because the primary goals of this paper are empirical, we leave a full 
exploration of these dynamics for future   work. 
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3 Data 
 
The main database used in this study was constructed from thousands of pages of 
original British Census of Population summary reports. The decennial Census data 
were collected by trained registrars during a relatively short time period, usually a 
few days in April of each census year. As part of the census, individuals were asked 
to state their occupation, but the reported occupations correspond more closely to 
industries than to what we think of as occupations today.24 A unique feature of this 
database is that the information is drawn from a full census. Virtually every person in 
the cities we study provided information on their occupation and all of these answers 
are reflected in the employment counts in our   data.25 

The database includes 31 cities for which occupation data were reported in each 
year from 1851-1911, containing 28-34% of the English population over the period 
we study. The geographic extent of these cities changes over time as the cities grow,  
a feature that we view as desirable for the purposes of our study.26 Appendix A.2 
provides a list of the cities included in the database, as well as a map showing the 
location of these cities in England. In general, our analysis industries cover the 
majority of the working population of the cities, with most of the remainder employed 
by the government or in  agriculture. 

The industries in the database span manufacturing, food processing, services and 
professionals, retail, transportation, construction, mining, and utilities. Because the 

occupational categories listed in the census reports varied over time, we combined 
multiple industries in order to construct consistent industry groupings over the   study 

24Examples from 1851 include “Banker”, “Glass Manufacture” or “Cotton manufacture”. The 
database does include a few occupations that do not directly correspond to industries, such as 
“Labourer”, “Mechanic”, or “Gentleman”, but these are a relatively small share of the population. 
These categories are not included in the analysis. In 1921 the Census office renamed what had 
previously been called “occupation” to be “industry” and then introduced a new set of data reflecting 
occupation in the modern sense. 

25This contrasts with data based on census samples, which often covers 5% or 1% of the available 
data. We have experimented with data based on a census sample (from the U.S.) and found that, 
when cutting the data to the city-industry level, sampling error has a substantial effect on the 
consistency and robustness of the results. 

26Other studies in the same vein, such as Michaels et al. (2013), also use metropolitan boundaries 
that expand over  time.   The alternative is working with fixed geographic units.   While that may       
be preferred for some types of work, given the growth that characterizes most of the cities in our 
sample, using fixed geographic units would mean either that the early observations would include a 
substantial portion of rural land surrounding the city,  or that a substantial portion of city growth  
would not be part of our sample in the later years. Either of these options is undesirable. 
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period. This process generates 26 consistent private sector occupation categories.27  

Of these, 23 can be matched to the connections matrices used in the analysis.  Table   
7 in Appendix A.2 describes the industries included in the   database. 

A preliminary analysis, using the agglomeration measure from Ellison & Glaeser 
(1997), suggests that the agglomeration patterns observed in our data are similar to 
those documented in modern studies (details in Appendix A.2, Tables 8-9). Britain’s 
main manufacturing and export industries, such as Textiles, Metal & Machines, and 
Shipbuilding, show high levels of geographic agglomeration. Many non-traded ser- 
vices or retail industries, including Merchants, Agents, Etc., Construction, and Shop- 
keepers, Salesmen, Etc. show low levels of agglomeration. Overall, the median level 
of industry agglomeration is between 0.02 and 0.027, which is comparable to the 
levels reported for the modern U.S. economy by Ellison & Glaeser (1997) and some- 
what larger than the levels reported for the modern British economy by Faggio et al. 

(2013).28 

This study also requires a set of matrices measuring the pattern of connections 
between industries. These measures should reflect the channels through which ideas 
may flow between industries. Existing literature provides some guidance here. Mar- 
shall (1890) suggested that firms may benefit from connections operating through 
input-output flows, the sharing of labor pools, or other types of technology spillovers. 
The use of input-output connections is supported by recent literature showing that 
firms share information with their customers  or suppliers.29  To  reflect this chan-   
nel, we use an input-output table constructed by Thomas (1987) based on the 1907 
British Census of Production (Britain’s first industrial census).30   We  construct    two 

 
27Individual categories in the years were combined into industry groups based on (1) the census’ 

occupation classes, and (2) the name of the occupation. Further details of this procedure are available 
in  the  Online Appendix. 

28Using industry data for 459 manufacturing industries at the four-digit level and 50 states, Ellison 
& Glaeser (1997) calculate a mean agglomeration index of 0.051 and a median of 0.026. For Britain, 
Faggio et al. (2013) calculate industry agglomeration using 94 3-digit manufacturing industries and 
84 urban travel-to-work areas.  They obtain a mean agglomeration index of 0.027 and a median of 
0.009. Kim (1995) calculates an alternative measure of agglomeration for the U.S. during the late 
19th and early 20th centuries, but given that he studies only manufacturing industries, and given 
the substantial differences between his industry definitions and our own, it is difficult to directly 
compare to his results. 

29For example, Javorcik (2004) and Kugler (2006) provide evidence that the presence of foreign 
firms (FDI) affects the productivity of upstream and downstream domestic firms.  

30For robustness exercises, we have also collected an input-output table for 1841 constructed by 
Horrell et al. (1994) with 12 more aggregated industry categories. See Appendix A.2 for more details. 
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variables: IOinij , which gives the share of industry i’s intermediate inputs that are 
sourced from industry j, and IOoutij which gives the share of industry i’s sales of 
intermediate goods that are purchased by industry j. One drawback of using these 
matrices is that they are for intermediate goods; they will not capture the pattern of 
capital goods flows. 

Another channel for knowledge flow is the movement of workers, who may carry 
ideas between industries.31 To reflect this channel, we construct two different mea- 
sures of the similarity of the workforces used by different industries. The first measure 
is based on the demographic characteristics of workers (their age and gender) from the 
1851 Census. These features had an important influence on the types of jobs a worker 
could hold during the period we study.32 For any two industries, our demographic- 
based measure of labor force similarity, EMPij , is constructed by dividing workers in 
each industry into these four available bins (male/female and over20/under20) and 
calculating the correlation in shares across the industries. A second measure of labor- 
force similarity, based on the occupations found in each industry, is more similar to 
the measures used in previous studies. This measure is built using U.S. census data 
from 1880, which reports the occupational breakdown of employment by industry. 
We map the U.S. industry categories to the categories available in our analysis data. 
Then, for any two industries our occupation-based measure of labor force similarity, 
OCCij  is the correlation in the vector of employment shares for each   occupation. 

 
 
4 Empirical approach 

 
The starting point for our analysis is based on Equation 16, which represents the 
growth rate of a city-industry as a function of within and cross-industry agglomera- 
tion effects as well as time-varying city-specific and national industry-specific factors. 
Rewriting this as a regression equation we  have, 

6 ln(Lict+1) = τ̃ii ln(Lict) + 
、

τ̃ki ln(Lkct) + θct + χit + eict (17) 

 
 

31Research by Poole (2013) and Balsvik (2011), using data from Brazil and Norway, respectively, 
has highlighted this channel of knowledge flow. 

32For example, textile industries employed substantial amounts of female and child labor, while 
metal and heavy machinery industry jobs were almost exclusively reserved for adult males. 

k i k i 
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where  6 is  the  first  difference  operator,  τ̃ii   and  τ̃ki   include  1/β,  θct   is  a  full  set  of 
city-year effects and χit is a full set of industry-year effects.  The first term on the  
right hand side represents within-industry spillovers, while the second term represents 
cross-industry spillovers.33 

One issue with Equation 17 is that there are too many parameters for us to credibly 
estimate given the available data. In order to reduce the number of parameters, we 
need to put additional structure on the spillover terms. As discussed in the previous 
section, we follow recent literature in this area, particularly Ellison et al. (2010), by 
parameterizing the connections between industries using the available input-output 
and labor force similarity matrices: 

 
τ̃ki  = β1IOinki + β2IOoutki + β3EMPki + β4OCCki ∀ i, k 

 
 

Substituting this into 17 we  obtain: 
 
 

6 ln(Lict+1)    =    τ̃ii ln(Lict) + β1 
、

IOinki ln(Lkct) + β2 
、

IOoutki ln(Lkct) 

+  β3 
、

EMPki ln(Lkct) + β4 
、

OCCki ln(Lkct) + θct + χit + eict (18) 
    

Instead of a large number of parameters measuring spillovers across industries, Equa- 
tion 18 now contains only four parameters multiplying four (weighted) summations  
of log employment. Summary statistics for the cross-industry spillover terms are 
available in Appendix Table  10. 

There is a clear parallel between the specification in Equation 18 and the empirical 
approach used in the convergence literature (Barro & Sala-i Martin (1992)). A central 
debate in this literature has revolved around the inclusion of fixed effects for the 
cross-sectional units (see, e.g., Caselli et al. (1996)). In our context, the inclusion of 
such characteristics could help control for location and industry-specific factors   that 

 
33We  purposely  omitted  the  last  term  of  Equation  16,  ∆ ln(v̄t

∗ ),  because  although  it  could  be 
estimated as a year-specific constant, it would be collinear with both the (summation of) industry- 
year and city-year effects. Moreover, in any given year we  also need to drop one of the city or  
industry dummies in order to avoid collinearity. In all specifications we chose to drop the industry- 
year dummies associated with the “General services”    sector. 

i k i k 

k/
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affect the growth rate of industry and are correlated with initial employment levels. 
However, the inclusion of city-industry fixed effects in Equation 18 will introduce a 
mechanical bias in our estimated coefficients (Hurwicz (1950), Nickell (1981)). This  
bias is a particular concern in a setting where the time-series is limited.  Solutions to  
these issues have  been offered by  Arellano & Bond (1991), Blundell & Bond (1998),  
and others, yet these procedures can also generate biased results, as shown by Hauk Jr.    
& Wacziarg (2009). In a recent review, Barro (2012) uses data covering 40-plus years  
and argues (p.  20) that in this setting,  “the most reliable estimates of convergence     
rates come from systems that exclude country fixed effects but include an array of X 
variables to mitigate the consequence of omitted variables.” Our approach essentially 
follows this advice, but with the additional advantage that we have two cross-sectional 
dimensions, which allows for the inclusion of flexible controls in the form of time- 
varying  city  and  industry effects. 

There are two issues to address at this point. First, there could be measurement 
error in Lict. Since this variable appears both on the left and right hand side, this 
would mechanically generate an attenuation bias in our within-industry spillover es- 
timates. Moreover, since Lict is correlated with the other explanatory variables, such 
measurement error would also bias the remaining estimates. We deal with measure- 
ment error in Lict on the right hand side by instrumenting it with lagged city-industry 
employment.34   Under the assumption that the measurement error in any given    city- 
industry pair is iid across cities and time, our instrument is   LInst = Lict−1 × gi−ct, 
where Lict−1  is the lag of Lict  and gi−ct  is the decennial growth rate in industry i 
computed using employment levels in all cities except  city c, as in Bartik (1991). 

Second, we are also concerned that there may be omitted variables that affect both 
the level of employment in industry j and the growth in employment in industry i. 
Such variables could potentially bias our estimated coefficients on both the cross- 
industry  and  (when  j  =  i)  the  within-industry  spillovers.  For  instance,  if  there 
is some factor not included in our model which causes growth in two  industries i   
and k /= i in the same city, a naive estimation would impute such growth to the 
spillover effect from k to i, thus biasing the estimated spillover upward. Our lagged 
instrumentation approach can also help us deal with these concerns. Specifically, 
when using instruments with a one-decade lag to address endogeneity concerns the 

 
34This approach is somewhat similar to the approach introduced by Bartik (1991) and has  been 

suggested  by  Combes  et al. (2011). 
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exclusion  restriction is that there is not some omitted  variable that is correlated   
with employment in some industry k in period t and affects employment growth in 
industry i from period t + 1 to t + 2. Moreover, the omitted variable cannot affect 
growth in all industries in a location, else it would be captured by the city-year fixed 
effect, nor can it affect the growth rate of industry i in all cities.35 Thus, while our 
approach does not allow us to rule out all possible confounding factors, it allows us  
to narrow the set of potential confounding forces relative to most previous work in 
this area.  Now, for the cross-industry case, the summation terms in Equation 18 such 
as 

),
k=i IOinki ln(Lkct) are instrumented with 

),
k =i IOinki ln(LInst), where LInst    is 

 

The estimation is performed using OLS or, when using instruments, two-stage 
least squares. Correlated errors are a concern in these regressions. Specifically, we  
are concerned about serial correlation, which Bertrand et al. (2004) argue can be a 
serious concern in panel data regressions, though this is perhaps less of a concern for 
us given the relatively small time dimension in our data. A second concern is that 
industries within the same city are likely to have correlated errors. A third concern, 
highlighted by Conley (1999) and more recently by Barrios et al. (2012), is spatial 
correlation occurring across cities. Here the greatest concern is that error terms may 
be correlated within the same industry across cities (though the results presented in 
Appendix A.4.5 suggest that cross-city effects are  modest). 

To deal with all of these concerns we use multi-dimensional clustered standard 
errors following work by Cameron et al. (2011) and Thompson (2011). We cluster by 
(1) city-industry, which allows for serial correlation; (2) city-year, which allows for 
correlated errors across industries in the same city and year; and (3) industry-year, 
which allows for spatial correlation across cities within the same industry and year. 
This method relies on asymptotic results based on the dimension with the fewest 

number of clusters.     In our case this is 23 industries × 6 years = 138, which should 
be large enough to avoid serious small-sample concerns. 

In order to conduct underidentification and weak-instrument tests while cluster- 
ing standard errors in multiple dimension, we produced a new statistical package 

following the approach from Kleibergen & Paap (2006). This was necessary because 
existing statistical packages are unable to calculate these tests correctly when cluster- 

35The results are not sensitive to the length of the lag used in the instrumentation. We have  
experimented with two- and three-decade lags and obtained essentially the same results. 

computed as described above. computed as described above. 
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ing by more than two dimensions. The procedure used to generate our new statistical 
package is described in Appendix A.3.2. Our package, which we plan to make pub- 
licly available, can accommodate clustering across an arbitrary number of dimensions, 
which is likely to be useful for future researchers. 

Finally, we may be concerned about how well our estimation procedure performs 
in a data set of the size available in this study. To assess this, we conduct a series of 
Monte Carlo simulations in which we construct 1000 new data sets with a size and 
error structure based on the true data,  but with known spillover parameter values.  
We  then apply our estimation procedure to these simulated data in order to obtain     
a distribution of placebo coefficient estimates, which can then be compared to the 
estimates obtained using the true data. These simulations, which are described in 
more detail in Appendix A.3.1, suggest that our estimation procedure performs well 
in datasets with a size and error structure similar to the true data. 

To simplify the exposition, we will hereafter collectively refer to the set of regres- 
sors ln(Lict) for i = 1...I as the within variables.  Similarly, with a small abuse of 
notation the term 

),
k=i IOinki ln(Lkct) is referred to as IOin, and so on for IOout, 

EMP , and OCC. We collectively refer to the latter terms as the between regressors 
since they are the parametrized counterpart of the spillovers across   industries. 

 
 
 

5 Main results 

 
Our main regression results are based on the specification described in Equation 18. 
The estimation strategy involves using four measures for the pattern of cross-industry 
spillovers: forward input-output linkages, backward input-output linkages, and two 
measures of labor force similarity.   We  begin our analysis in Table  1 by  looking     
at results that include only one of these at a time. Columns 1-3 include only the 
forward input-output linkages; Columns 1 presents OLS results; Column 2 presents 
results with lagged instrumentation on the within terms; and Column 3 uses lagged 
instrumentation for both the within and between terms. A similar pattern is used for 
backward input-output linkages in Columns 4-6, the demographic-based labor force 
similarity measure in Columns 7-9, and the occupation-based labor force similarity 
measure in Columns 10-12.  All of these results include a full set of industry-specific 
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within-industry terms, but these are not reported in Table 1 for space reasons.36   

These results show strong positive effects operating through forward input-output 
connections, suggesting that local suppliers play an important role in industry growth. 
The importance of local suppliers to industry growth is perhaps the clearest and   
most robust result emerging from our analysis. There is little evidence of positive 
effects operating through local buyers. The results do provide some evidence that the 
presence of other industries using similar labor pools may increase growth, particularly 
when using the more detailed OCC measure. A comparison across columns for each 
spillover measure shows that the IV results do not differ from the OLS results in        
a statistically significant way, suggesting that any measurement error or omitted 
variables concerns addressed by  instruments are not generating substantial bias in  
the OLS results. 

Table 2 considers all four channels simultaneously. Columns 1-3 present results  
in which we estimate a single coefficient on the within-industry terms. Columns 4-6 
present results in which we estimate industry-specific within-industry effects. These 
heterogeneous within-industry coefficients, which are not reported in Table 2,  will  
be explored later. Columns 1 and 4 presents OLS results. In Column 2 and 5 we 
instrument the within terms. In Column 3 and 6 we use instruments for both the 
within and between terms.   The results are generally similar to those from Table       
1; the presence of local suppliers or industries employing a similar labor force both 
appear to enhance city-industry growth. The presence of local buyers has no positive 
effect. In Columns 1-3, we can see that the within term is negative, suggesting that  
on average across all industries employment growth is slower in locations where initial 
industry employment is already large. 

 
 
 
 
 
 
 
 
 
 

36We  do  not  report  first-stage  results  for  our  instrumental  variables  regressions  because these 
involve a very large number of first-stage regressions. Instead, for each specification we report the 
test statistics for the Lagrange Multiplier underidentification test based on Kleibergen & Paap (2006) 
as well as the test static for weak instruments test based on the Kleibergen-Paap Wald statistic. It is 
clear from these statistics that weak instruments are not a substantial concern in these specifications. 
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Table 1:  OLS and IV regressions including only one spillover path at a time 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Multi-level clustered standard errors by city-industry, city-year, and industry-year in paren- 
thesis. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Heterogeneous within terms, 
city-time and industry-time effects are included in all regressions but not displayed. 2SLS 
regressions use lagged instruments. Note that the number of observations falls for the instru- 
mented regressions because the instruments require a lagged employment term. Thus, data 
from 1851 are not available for these regressions. Acronyms: wtn = within, btn = between. 
“KP under id.” denotes the test statistic for the Lagrange Multiplier underidentification 
test based on Kleibergen & Paap (2006). “KP weak id.” denotes the test statistic for a 
weak instruments test based on the Kleibergen-Paap Wald statistic. 

 
 
 
 
 
 
 
 

Based on the results from Column 6 of Table 2, our preferred specification, a one 
standard deviation increase (3.21) in the presence of local suppliers (the IOin chan- 
nel) increases city-industry growth by 20%. Turning to the occupational similarity 
channel, OCC, a one standard deviation increase in the presence of occupationally- 
similar local industries (25.70) leads to a 17% increase in city industry growth when 
using the results from Column 6 of Table 2. Thus, both of these channels appear to 
exert a substantial positive effect on city-industry  growth. 

 (1) (2) (3) (4) (5) (6) 
IOin 0.0581*** 0.0440*** 0.0417***    

 (0.0128) (0.0113) (0.0113)    
IOout    -0.0030 -0.0105 -0.0143 

    (0.0108) (0.0112) (0.0113) 
Observations 4,263 3,549 3,549 4,263 3,549 3,549 
Estimation ols 2sls 2sls ols 2sls 2sls 
Instrumented none wtn wtn-btn none wtn wtn-btn 
KP under id.  29.27 32.40  23.18 23.37 
KP weak id.  77.59 75.24  61.98 61.10 

  
(7) 

 
(8) 

 
(9) 

 
(10) 

 
(11) 

 
(12) 

EMP 0.0009 0.0022* 0.0017    
 (0.0017) (0.0013) (0.0014)    

OCC    0.0058** 0.0058* 0.0060* 
    (0.0029) (0.0032) (0.0032) 

Observations 4,263 3,549 3,549 4,263 3,549 3,549 
Estimation ols 2sls 2sls ols 2sls 2sls 
Instrumented none wtn wtn-btn none wtn wtn-btn 
KP under id.  25.42 24.53  22.08 21.69 
KP weak id.  70.37 64.49  56.4 45.65 
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Table 2: Results with all cross-industry spillover  channels 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Multi-level clustered standard errors by city-industry, city-year, and industry-year in parenthesis. 
Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Heterogeneous regressors within are included 
in Columns 4-6 but not displayed. City-time and industry-time effects are included in all regressions 
but not displayed. 2SLS regressions use lagged instruments. Note that the number of observations 
falls for the instrumented regressions because the instruments require a lagged employment term. 
Thus, data from 1851 are not available for these regressions. Acronyms: wtn = within, btn = 
between. “KP under id.” denotes the test statistic for the Lagrange Multiplier underidentification 
test based on Kleibergen & Paap (2006). “KP weak id.” denotes the test statistic for a weak 
instruments test based on the Kleibergen-Paap Wald statistic. 

 
 
 

Our analysis can also help us understand the strength of within-industry spillovers, 
reflected in the ln(Lict) term in Equation 17.37 When analyzing these results, it is 
important to keep in mind that they reflect the net effect of within-industry agglom- 
eration forces, which may be generated through a balance between agglomeration 
forces and negative forces such as competition or mean-reversion due to the diffusion 
of technologies across cities. We cannot identify the strength of local within-industry 
agglomeration forces independent of counteracting forces. However, it is the net 
strength of these forces, which we are able to estimate, that is relevant for under- 
standing the contribution of within-industry agglomeration forces to city   growth. 

We have already seen, in Table 2 Columns 1-3, that the average within-industry 
effect across all industries is negative.         These results are consistent with negative 

 

37In a static context these are often referred to as localization economies. 

 (1) (2) (3) (4) (5) (6) 
IOin 0.0216*** 0.0187*** 0.0161** 0.0758*** 0.0623*** 0.0622*** 

 (0.0072) (0.0067) (0.0069) (0.0170) (0.0158) (0.0159) 
IOout 0.0043 0.0004 -0.0007 -0.0051 -0.0144 -0.0178 

 (0.0047) (0.0051) (0.0050) (0.0095) (0.0105) (0.0109) 
EMP 0.0002 0.0001 -0.0001 0.0001 0.0020* 0.0016 

 (0.0005) (0.0005) (0.0005) (0.0016) (0.0012) (0.0014) 
OCC 0.0020 0.0013 0.0012 0.0087*** 0.0070** 0.0068** 

 (0.0013) (0.0013) (0.0013) (0.0029) (0.0032) (0.0032) 
Within -0.0316*** -0.0225* -0.0211*    

 (0.0114) (0.0122) (0.0124)    
Observations 4,263 3,554 3,549 4,263 3,549 3,549 
Estimation ols 2sls 2sls ols 2sls 2sls 
Instrumented none wtn wtn-btn none wtn wtn-btn 
Within terms homog homog homog heter heter heter 
KP under id.  22.79 23.99  28.05 29.87 
KP weak id.  5508.28 1082.03  76.09 50.72 
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dynamic within-industry effects, perhaps linked to the unwillingness of firms to share 
new ideas with their direct competitors. However, the fact that our results change 
substantially once we  allow for heterogeneous within-industry effects, as in Columns   4-
6 of Table  2,  suggests  that  these are likely to vary  substantially  across industries.  We 
explore these heterogeneous within-industry effects in Figure 2, which presents 
coefficients and 95% confidence intervals for industry-specific within-industry spillover 
coefficients from regressions corresponding to Column 6 of     Table  2. 

 
Figure 2:  Strength of within-industry effects by  industry 

 

 
Results correspond to the regression described in Column 6 of Table 2. This figure displays coefficient 
estimates and 95% confidence intervals based on standard errors clustered by city-industry, city-year, 
and industry-year. The regression includes a full set of city-year and industry-year effects as well as 
between terms.  Both the within and between terms are instrumented using one-decade   lags. 

 

In only one industry, shipbuilding, do we observe any evidence of positive within- 
industry effects. This industry was characterized by increasing returns and strong 
patterns of geographic concentration. All other industries exhibit slower growth in 
locations where initial industry employment was large, after controlling for other 
forces. Within-industry agglomeration benefits, it would appear, are more the excep- 
tion  than  the rule. 

The results presented so far describe coefficients generated using all industries, 
where each industry is given equal weight.  We  may be concerned that these   results 



27  

 
are being driven primarily by  smaller industries or smaller cities.   To  check  this,   
we have also calculate weighted regressions, where the set of observations for each 
city-industry is weighted based on employment in that city-industry in 1851.38 Note 
that this puts a lot of weight on the effects observed in a few very large cities. The 
results are presented in Table 3. These weighted regressions continue to highlight the 
important role played by local suppliers. Thus, this result is not driven by smaller 
industries or cities. However, we no longer observe positive results associated with 
the occupational similarity measure. This suggests that the positive impact of local 
industries employing similar workers observed in Table 2 is being driven by smaller 
industries or smaller cities, an interesting result in  itself. 

 
Table 3: Weighted regression results with all cross-industry spillover  channels 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Multi-level clustered standard errors by city-industry, city-year, and industry-year in parenthesis. 
Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Heterogeneous regressors within are included 
in Columns 4-6 but not displayed. City-year and industry-year effects are included in all regressions 
but not displayed. 2SLS regressions use lagged instruments. Note that the number of observations 
falls for the instrumented regressions in columns 3-6 because the instruments require a lagged 
employment term. Thus, data from 1851 are not available for these regressions. Acronyms:  wtn 
= within, btn = between. “KP under id.” denotes the test statistic for the Lagrange Multiplier 
underidentification test based on Kleibergen & Paap (2006). “KP weak id.” denotes the test 
statistic for a weak instruments test based on the Kleibergen-Paap Wald statistic. Weights for 
each city-industry observation are based on employment in the city-industry in 1851. 

 
 

38Specifically, this is done by weighting the importance of each city-industry observation based   on 
the number of workers it represented in 1851. We base the weights for all years on initial city-industry 
employment to avoid the potential for endogeneity in the city-industry weights. 

 (1) (2) (3) (4) (5) (6) 
IOin 0.0161 0.0224** 0.0259*** 0.0299** 0.0314*** 0.0361*** 

 (0.0105) (0.0096) (0.0100) (0.0137) (0.0120) (0.0126) 
IOout -0.0039 -0.0082 -0.0086 -0.0038 -0.0111 -0.0110 

 (0.0057) (0.0065) (0.0065) (0.0130) (0.0138) (0.0143) 
EMP 0.0003 0.0002 0.0003 0.0002 0.0008 0.0007 

 (0.0003) (0.0003) (0.0003) (0.0009) (0.0008) (0.0009) 
OCC -0.0007 -0.0006 -0.0002 -0.0023 -0.0023 -0.0015 

 (0.0015) (0.0015) (0.0015) (0.0028) (0.0029) (0.0028) 
Within -0.0127 -0.0120 -0.0122    

 (0.0111) (0.0116) (0.0115)    
Observations 4,253 3,544 3,541 4,253 3,541 3,541 
Estimation ols 2sls 2sls ols 2sls 2sls 
Instrumented none wtn wtn-btn none wtn wtn-btn 
wtn homog homog homog heter heter heter 
KP under id.  23 24.21  28.03 29.82 
KP weak id.  5261.37 1026.95  75.83 50.28 
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We have also investigated the robustness of our results to dropping individual 

industries or individual cities from the analysis database (see Appendix A.4.1). These 
exercises show that the significance of the estimates on the IOin and OCC channels 
are robust to dropping any city or any industry. However, the estimated coefficient 
and confidence levels for the IOout coefficient is sensitive to the exclusion of particular 
industries. Specifically, when shipbuilding is excluded we observe that the IOout 
coefficient becomes positive but not statistically significant.39    This suggests that     
in general the presence of local buyers may have a mild positive effect on industry 
growth. 

In addition, we have explored the sensitivity of our results to using alternative 
functional forms to represent the relationship between spillovers and technological 
progress. In Appendix A.4.3 we present results using alternative concave functional 
relationships such as a square root or fifth root.  Our findings are not sensitive to  
these alternatives. 

We have also explored the robustness of our results to the use of alternative 
connections matrices. In particular, in Appendix A.4.4 we present results obtained 
while using the less detailed input-output table constructed by Horrell et al. (1994), 
which covers 12 more aggregated industry categories in 1841. This alternative input- 
output matrix delivers similar results to those shown in our main regression   tables. 

The results discussed so far reveal average patterns across all industries. An ad- 
ditional advantage of our empirical approach is that it is also possible to estimate 
industry-specific coefficients in order to look for (1) heterogeneity in the industries 
that benefit from each type of inter-industry connection or (2) heterogeneity in the 

industries that produce each type of inter-industry connections. In Appendix A.4.2, 
we estimate industry-specific coefficients for both spillover-benefiting and spillover- 
producing industries and then compare them to a set of available industry character- 

istics such as firm size, export and final goods sales shares, and labor or intermediate 
cost shares. With only 23 estimated  industry coefficients we  cannot    draw strong 

conclusions from these relationships. However, our results do suggest several inter- 
esting patterns. The only clear result is that industries that benefit from or produce 

spillovers through the OCC channel tend to have a higher labor cost to sales ratio, a 
finding that seems very reasonable. We also observe a consistent negative relationship 

39Shipbuilding stands out relative to the other industries because it is particularly reliant on local 
geography. 
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between firm size and all types of inter-industry connections. While this relationship 
is not statistically significant,  it is consistent across all spillover types and it fits   
well with previous work highlighting the importance of inter-industry connections for 
smaller firms (e.g., Chinitz (1961)). 

We can also look at how the estimated industry-specific within-industry coeffi- 
cients are related to industry characteristics. This is done in Appendix A.4.2. With 
such a small number of industry coefficients we cannot draw strong conclusions from 
these results. However, we do observe some evidence that within-industry connec- 
tions are more important in industries with larger firm sizes, which contrasts with the 
consistent negative relationship that we observe between firm size and cross-industry 
spillovers. 

While the analysis described above focuses on spillovers occurring within-cities, 
we have also explored the possibility that there may be important cross-city effects. 
To explore cross-city effects, we have run additional regressions including variables 
measuring market size as well as cross-industry spillovers occurring across cities. Our 
results, reported in Appendix A.4.5, suggest that cross-city effects are much weaker 
than within-city forces. This makes sense given that we think that the shape of cities 
reflects the rapidly decaying strength of local agglomeration forces. We also find that 
accounting for cross-city effects has little impact on our estimates of the strength of 
within-city agglomeration forces. 

 
 
 

6 Strength of the agglomeration  forces 

 
In this section we examine the relationship between city size and city-industry growth 
and show how our city-year effects can be used to construct a summary measure of 
the aggregate strength of the many cross-industry agglomeration forces present in  
our model. In standard urban models, the impact of agglomeration forces is balanced 
by congestion forces related to city size, operating through channels such as higher 
housing prices or greater commute times. In our model, we have been largely agnostic 
about the form of the congestion forces, which will be captured primarily by the city-
time effects. Thus, examining these estimated city-time coefficients offers an 
opportunity for assessing the net impact of dynamic congestion or agglomeration force 
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related to overall city size.40 Also, the difference between these estimated city-time 
effects and actual city growth rates must be due to the impact of the agglomeration 
forces in the estimation equation. As a result, comparing the estimated city-time 
effects to actual city growth rates allows us to quantify the combined strength of the 
many cross-industry agglomeration forces captured by our  measures. 

To make this comparison more concrete, consider the graphs in Figure 3. The 
dark blue diamond symbols in each graph describe, for each decade starting in 1861, 
the relationship between the actual growth rate of city working population and the  
log of city population at the beginning of the decade. The slopes of the fitted lines  
for these series fluctuate close to zero, suggesting that on average Gibrat’s Law holds 
for the cities in our  data. 

We want to compare the relationship between city size and city growth in the 
actual data, as shown by the dark blue diamonds in Figure 3, to the relationship 
between these variables obtained while controlling for within and cross-industry ag- 
glomeration forces. This can be done using the estimated city-time effects represented 
by θct in Eq. 18. The red squares in Figure 3 describe the relationship between the 
estimated city-year coefficients for each decade, θct, and the log of city population    
at the beginning of each decade. In essence, these are showing us the relationship 
between city size and city growth after controlling for national industry growth trends 
and the agglomeration forces included in our model. We can draw two lessons from 
these graphs. First, in all years the fitted lines based on the θct terms slope downward 
more steeply than the fitted lines for actual city growth. This suggests that, once we 
control for cross-industry agglomeration forces, city size is negatively related to city 
growth, consistent with the idea that there are dynamic city-size congestion forces. 
Second, the difference between the slopes of the two fitted lines can be interpreted as 
the aggregate effect of the various agglomeration forces in our model averaged across 
cities. Put simply, if we can add up the strength of the convergence force in any 
period and compare it to the actual pattern of city growth, then the difference must  
be equal to the strength of the agglomeration forces.  Third,  the patterns described   
in Figure 3 appear to be close to linear in logs, suggesting that these forces do not 
differ dramatically across different city sizes. 

The strength of these effects can be quantified in terms of the implied convergence 
 

40These results will reflect only the net impact of city size, including both congestion and agglom- 
eration forces. 
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rate following the approach of Barro & Sala-i Martin (1992). To do so, we run the 
following regressions: 

 

θct = a0 + a1 ln(WORKpopct) + fct (19) 
 

GrowthWORKpopct = b0 + b1 ln(WORKpopct) + fct (20) 

where θct is the estimated city-time effect for the decade from t to t + 1, WORKpopct 

is the working population of the city in year t, and GrowthWORKpopct is the actual 
growth rate of the city from t to t + 1. These regressions are run separately for each 
decade from 1861 to 1911. Convergence rates can be calculated using the estimated 
a1 and b1 coefficients. 

The results are presented in the top panel of Table 4. The two left-hand columns 
describe the results from Equation 19 and the annualized city-size divergence rate 
implied by these estimates. The next two columns describe similar results based on 
Equation 20. The difference between these two city-size divergence rates, given in  
the right-hand column, describes the aggregate strength of the agglomeration force 
reflected in the cross-industry terms. These results suggest that the strength of city 
agglomeration forces, in terms of the implied divergence rate, was 7.5-8.9% per decade. 
In the bottom panel of Table 4 we calculate similar results except that the θct terms  
are obtained using regressions in which each observation is weighted based on the 
employment in each city-industry in 1851. These results suggest a weaker agglomera- 
tion force, equal to an implied divergence rate of 1.0-2.3% per decade. The difference 
between these two results suggests that the agglomeration forces we capture may have 
played a more important role for small  industries. 
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Figure 3:  City size and city growth 
 

  
 

  
Solid lines: Fitted lines comparing actual city growth over a decade to the log of city size at the 
beginning of the decade. Dotted lines: Fitted lines comparing estimated coefficients from city- 
time effects for each decade to the log of city size at the beginning of the decade. Blue diamonds: 
Plot the actual city growth over  a decade against the log of city population at the beginning of       
the decade. Red squares: Plot the estimated city-time coefficients over the same decade (the θct 

terms estimated  using Eq.  18) against  the log of city population  at the beginning of the decade.  
The bottom right-hand panel compares the log of city population in 1851 to the average of city 
growth rates over the entire 1861-1911 period and the average of city-time fixed effects across the 
entire 1861-1911 period. 
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Table 4:  Measuring the aggregate strength of the agglomeration  forces 
 

 
Column 1 presents the a1 coefficients from estimating Equation 19 for each decade (cross-sectional 
regressions). Column 2 presents the decadal convergence rates implied by these coefficients.  Column 
3 presents the b1 coefficients from estimating Equation 20 and Column 4 presents the decadal diver- 
gence rates implied by these coefficients. Column 5 gives the aggregate strength of the divergence 
force due to the agglomeration economies, which is equal to the difference between the decadal di- 
vergence coefficients in Columns 2 and 4. The results in the top panel are based on city-time effects 
estimated from unweighted regressions while the results in the bottom panel are based on city-time 
effects estimated using weighted regressions based on city-industry employment in    1851. 

 
 

There are some caveats to keep in mind when assessing these results. First, there 
are likely to be agglomeration forces not captured by our estimation. These omitted 
agglomeration forces may be partially reflected in the city-year fixed effects, which 
would lead us to understate the strength of the agglomeration forces. Second, some 
congestion forces may also be captured by our cross-industry terms. Similarly, there 
may be some agglomeration forces captured by the within-industry  terms,  which  
will also not be reflected in our results. Thus, the strength of the cross-industry 
agglomeration force measured here is likely to be a lower bound. 

We may be concerned that the results described in Table 4 are driven in part by the 
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inclusion of industry-time effects in the regressions used to obtain the θct terms. We 
explore this possibility in Appendix A.4.6 by comparing the relationship between our 
estimated θct terms and city-time effects estimated while controlling for industry-year 
effects. Since the only difference between these specifications is the presence of the 
within and cross-industry agglomeration forces, we can be sure that these are driving 
any differential results. Estimates obtained using this method are very similar, but 
slightly larger, than those described in Table   4. 

We can use a similar exercise to estimate the aggregate strength of the convergence 
force due to within-industry effects.  We begin by  estimating, 

 
6 ln(Lict+1) = τ̃ii ln(Lict) + θct + χit + eict . (21) 

 
 
Next, we use the values of   θWITHIN to estimate, 

 
 

θWITHIN  = d0 + d1 ln(WORKpopct) + fct. (22) 
 
We then calculate the convergence force associated with the within-industry terms 
using the same approach that we  used previously.  Table  5 describes the results.   
The negative measured divergence force in this table highlights that within-industry 
effects,  on net,  act as a convergence force.   The strength of this force is sensitive    
to whether the regressions are weighted, which suggests that the negative within- 
industry employment effects tend to be stronger for smaller  industries. 
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Table 5: Measuring the aggregate strength of the convergence force associated with 
the within-industry effects 

 

 
Column 1 presents the d1 coefficients from estimating Equation 22 for each decade (cross-sectional 
regressions).  Column 2 presents the decadal divergence rates implied by these coefficients.  Column  
3 presents the b1 coefficients from estimating Equation 20 and Column 4 presents the decadal diver- 
gence rates implied by these coefficients. Column 5 gives the aggregate strength of the divergence 
force due to the agglomeration economies, which is equal to the difference between the decadal con- 
vergence coefficients. The negative values in Column 5 indicate that within-industry effects are, on 
net, a source of convergence across cities. The results in the top panel are based on city-time effects 
estimated from unweighted regressions while the results in the bottom panel are based on city-time 
effects estimated using weighted regressions based on city-industry employment in    1851. 

 
 
 
7 Conclusion 

 
In the introduction, we posed a number of questions about the nature of localized 
agglomeration forces. The main contribution of this study is to provide a theoretically 
grounded empirical approach that can be used to address these questions and the 
detailed city-industry panel data needed to implement   it. 

We can now provide some answers for the particular empirical setting that we 
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study. First, we find evidence that cross-industry agglomeration economies were more 
important than within-industry agglomeration forces for generating city employment 
growth. Within-industry effects are, on net, generally negative. This suggests that 
local clusters of firms working in the same industry, which have attracted substantial 
attention, are unlikely to deliver dynamic benefits. Second, our results suggest that 
industries grow more rapidly when they co-locate with their suppliers or with other 
industries that use occupationally-similar workforces. This result is in line with ar- 
guments made by Jacobs (1969), as well as recent empirical findings.  We document  
a clear negative relationship between city size and city growth that appears once      
we account for agglomeration forces related to a city’s industrial composition. This 
suggests that Gibrat’s law is generated by a balance between agglomeration and dis- 
persion forces. A lower bound estimate of the overall strength of the agglomeration 
forces captured by our approach, in terms of the implied annual divergence rate in 
city size, is around 1.0-2.3% per decade, though we find evidence that the effect on 
smaller industries and smaller cities is likely to be substantially  larger. 

One of the most striking features of our results is how similar they look to some  
of the existing findings in the literature, most of which are based on modern U.S. or 
European data. In particular, the ordering of importance for the different spillover 
channels – with input-output paths showing the strongest effects, followed by occupa- 
tional similarity – looks very similar to the ordering obtained by Ellison et al. (2010). 
This provides suggestive evidence that there may be substantial persistence in the 
importance of these agglomeration economies over time and across space. Under- 
standing how the patterns of within-industry and inter-industry connections evolve 
over time is one avenue for future  research. 

The techniques introduced in this paper can be applied in any setting where 
sufficiently rich long-run city-industry panel data can be constructed. Recent work 
has made progress in constructing data of this type for the U.S. in both the modern 
and historical period. Applying our approach to these emerging data sets is another 
promising avenue for future work. 
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A Appendix 

 
A.1 Theory appendix 

 
This appendix explores several additional factors that are not included in the model 
provided in the main text. We begin by discussing the implications of allowing vari- 
ation in the costs of innovation or firm entry across industries. Next, we consider 
allowing production function parameters to vary across industries. We then look at 
incorporating capital into the model. Finally, we consider the implications of includ- 
ing intermediate goods and the closely related issue of incorporating trade costs into 
the model. 

 
Variation in Industry Innovation or Entry Cost Parameters 

 
Suppose that the innovation costs or entry costs are allowed to vary by industry,  

so that we have Fi and Ci. This will affect the rate of firm entry and R&D, which will 
affect the size of city-industry employment. However, as long as these cost parameters 
are fixed over time and both denominated in the same units (labor), they will be 
differenced out when we obtain the main regression specification. Thus, our empirical 
approach will be robust to this modification. Note that holding these parameters fixed 
over time does not imply that the costs of entry or innovation is fixed over time, since 
that cost will also depend on the wage, which will vary over time and across locations. 
However, it does imply that the relative cost of entry and R&D is constant over time 
and across locations, even if it varies across  industries. 

 
Variation in Industry Production Function  Parameters 

 
Suppose that we allow the production function  parameters to vary  by  industry,  

so that they are now all indexed by i. In this case, the coefficient on the spillover  
term from industry k to industry i, which in our baseline model is τki/β is now given 
by τki/βi. What this tells us is that the way in which employment in industry k is 
translated into employment growth in industry i will now depend on the importance  
of local industry-specific resources in the production function. This is because local 
resources are the factors that tie industries to particular locations. Industries in which 
local resources are relatively unimportant (low β) should exhibit large estimated 
spillover coefficients because employment will be more able to respond to   changing 
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technology levels by shifting across locations. 

When we estimate single cross-industry spillover terms we will be estimating the 
average impact across industries with potentially varying β parameters. It is also 
possible to estimate industry-specific spillover benefit terms in our framework, which 
is done in Appendix A.4.2. 

 
Incorporating Capital 

 
Suppose that we incorporate capital as an input into production, so that the 

production function is, 
 

yicft = aicftLα1
 

α2 
icft 

α3 
icft 

β 
icft E

1−α1−α2−β . 
 

If there is a national capital  market then this implies a national price of capital,  
which we denote κt. In this case,  introducing capital into the model would simply  
add an additional time-varying national factor to the estimating equation. This will  
be absorbed by the fixed effects and would not affect our  results. 

Alternatively, it may be the case that capital markets are more local. In this case, 
the price of capital will be κct. When industries share a common set of production 
function parameters this will affect all industries in a similar way. As a result, it will 
be absorbed into the city-time effects and will not impact our   results. 

However, if we also allow industries to be more or less capital intensive, then 
variation in the local price of capital may have heterogeneous effects on city-industry 
growth. Under these circumstances, the source of capital will become important. If 
capital is related to city size, for example because capital availability  depends on  
total local savings which scales with city size, then this will introduce an industry- 
specific city size effect. It is possible to incorporate industry-specific city size effects 
into our regression framework. We have experimented with doing so and it does not 
substantially alter our results. In order for capital to be one channel behind our within 
and cross-industry spillover estimates, we need three things to be true: (1) capital is 
local, (2) capital intensity varies across industries, and (3) the accumulation of savings 
depends on the local composition of industries. If all of these factors are in place, 
then local capital channels may be a dynamic agglomeration force in our setting. 
However, capital was fairly mobile across regions in Britain during the period we 

H K R 
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study, suggesting that local capital accumulation is unlikely to be behind our results, 
though this may have been a more important factor during the earlier first Industrial 
Revolution period. 

 
Intermediate Goods and Trade  Costs 

 
Next, we discuss the implications of incorporating intermediate goods and trade 

costs into the theory. We begin by introducing intermediate inputs while maintaining 
the assumption of free trade. We then consider the implications of allowing non-zero 
trade costs. 

Suppose that each firm uses a basket of intermediate inputs denoted by Iicft in 
production, with a production function parameter ϕ. Let the set of intermediate  
inputs used in production vary across industries, but for simplicity, we assume that 
within an industry all firms use these inputs in fixed proportions. Let Z be an input- 
output matrix with elements zij  such that Iit  units of intermediate input to industry      
i require Iitzij units of output from industry j (i.e., the production function for 
intermediates is Leontief).  Total  intermediate demand for the output from    industry 
j  is then xIO  = 

),
i Iitzij .   With costless trade,  each industry will face a     national 

intermediate good input price in each period, which we denote dit. The resulting firm 
optimization problem in period three  is, 

 
max 

Licft,Ricft 
pitaicftLα1

 
α2 
icft 

ϕ 
icft 

β 
icft − wctLicft − qctHicft − ditIicft − rictRicft 

 
with 1 − α1 − α2 − ϕ − β > 0 

With free trade, this will yield a regression specification that is very similar to the 
one obtained in the main  text: 

H I R 
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Thus, under the assumption of free trade across locations, the introduction of in- 
termediate inputs will not impact our results because the impact of changing input 
prices will be absorbed in the time-varying industry effects. 

We can use Eq. 23 to explore the impact of introducing trade costs into the model 
in a partial equilibrium way.  Allowing non-zero trade costs will affect this equation  
in two ways. First, output prices will vary at the local level, so pit will become pict. 
Second, intermediate input prices will also vary locally, so dit becomes dict. With  
trade costs,  both the input and the output prices faced by  firms in industry i can   
vary across cities. 

To consider the impact of trade costs, suppose for now that we turn off all spillover 
channels, so Sict  = 0  and, 

 

ln(Lict) − ln(Lict−1)    −   ϕ  ln(dit) − ln(dit−1

l
 

+      ln(pit) − ln(pit−1)
l 

(24) 

−  [ν(α2 − 1) − α2]  ln(qct) − ln(qct−1)
l
 

+    (α2  − 1)
  

ln(v̄t
∗ ) − ln(v̄t

∗  
1)
l 

+ Eict

l

 

Now, focusing on the input prices side, suppose that there are two cities, A and   
B, and that City A has more industry i suppliers than city B so that the cost of 
intermediate inputs to industry i is lower in City A than in City B. This implies that 
employment in industry i will be larger in City A than in City B in some initial period: 

β 
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this is static agglomeration a la Krugman (1991). A similar effect can be generated 
through output price channels. However, as we roll the model forward, Equation 24 
shows that, absent other changes, industry i will not grow faster in City A than in 
City B. In the absence of other effects, input-output connections alone cannot act as   
a dynamic agglomeration force. 

Where input-output connections can generate dynamic agglomeration patterns is 
by transmitting the effects of other changes, such as falling transport costs. However, 
falling trade costs cannot be a sustained force of dynamic agglomeration since trade 
costs are bounded below by zero. Moreover, trade costs were fairly stable over at 
least part of the period we study, while urbanization continued apace.41 This pattern 
suggests that input-output connections and trade costs can be an important static 
agglomeration force, but these forces are unlikely to generate the dynamic agglomer- 
ation  patters  studied here. 

In a world of static inter-industry agglomeration forces, the growth in industry i 
must be driven by growth in industry j, rather than the level of industry j. But this 
raises questions about the causes of the initial growth in industry j. Ultimately, a 
world of static agglomeration forces is a world of exogenous city-industry growth. In 
contrast, dynamic agglomeration offers an explanation for city industry growth, just 
as endogenous growth theory offers an explanation for aggregate growth. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

41Crafts & Mulatu (2006) conclude that, “falling transport costs had only weak effects on the 
location of industry in the period 1870 to 1911.”  Jacks et al. (2008) find a rapid fall in external    
trade costs prior to 1880, with a much  slower decline    thereafter. 
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A.2 Data appendix 
 
 
 
 
 

 
  Table 6:  Cities in the primary analysis  database  

 

 
City 

Population 
in 1851 

Working population 
in 1851 

Workers in analysis 
industries in 1851 

Bath 54,240 27,623 23,609 
Birmingham 232,841 111,992 101,546 
Blackburn 46,536 26,211 24,458 
Bolton 61,171 31,211 28,885 
Bradford 103,778 58,408 55,223 
Brighton 69,673 32,949 27,954 
Bristol 137,328 64,025 54,962 
Derby 40,609 19,299 16,787 
Gateshead 25,568 18,058 8,562 
Halifax 33,582 18,058 16,488 
Huddersfield 30,880 13,922 12,465 
Kingston-upon-Hull 84,690 36,983 31,513 
Ipswich 32,914 14,660 11,996 
Leeds 172,270 83,570 7 4,959 
Leicester 60,496 31,140 28,481 
Liverpool 375,955 165,300 142,197 
London 2,362,236 1,088,285 930,797 
Manchester 401,321 204,688 187,000 
Newcastle-upon-Tyne 87,784 38,564 33,271 
Northampton 26,657 13,626 12,062 
Norwich 68,195 34,114 29,710 
Nottingham 57,407 33,967 31,106 
Oldham 72,357 38,853 35,958 
Portsmouth 72,096 31,345 19,039 
Preston 69,542 36,864 33,085 
Sheffield 135,310 58,551 53,472 
South Shields 28,974 11,114 10,028 
Southampton 35,305 14,999 12,215 
Stockport 53,835 30,128 27,836 
Sunderland 63,897 24,779 21,639 
Wolverhampton 49,985 22,727 19,851 
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Figure 4:  Map showing the location of cities in the analysis  database 
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Table 7:  Industries in the primary analysis database with 1851   employment 
 

Manufacturing 
Chemicals  & drugs 

 
18,514 

Services and Professional 
Professionals* 

 
40,733 

Clothing, shoes, etc. 328,669 General services 460,885 
Instruments  & jewelry* 31,048 Merchant, agent, accountant, etc. 58,172 
Earthenware & bricks 19,580 Messenger, porter, etc. 72,155 
Leather & hair goods 26,737 Shopkeeper, salesmen, etc. 27,232 
Metal  & Machines 167,052   
Oil, soap, etc. 12,188   
Paper and publishing 42,578 Transportation  services  
Shipbuilding 14,498 Railway transport 10,699 
Textiles 315,646 Road transport 35,207 
Vehicles 9,021 Sea & canal transport 66,360 
Wood & furniture 69,648   

Food, etc. 
Food processing 

 
113,610 

Others industries 
Construction 

 
137,056 

Spiritous drinks, etc. 8,179 Mining 24,505 
Tobacconists* 3,224 Water  &  gas services 3,914 

 
Industries marked with a * are available in the database but are not used in the baseline analysis 
because they cannot be linked to categories in the 1907 British input-output table. 
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Table 8:  Industry agglomeration patterns based on the Ellison & Glaeser   index 
 

 
This table reports industry agglomeration in each year based on the index from Ellison & Glaeser 
(1997).  This approach adjusts  for the size of plants in an industry using an industry Herfindahl   
index.  We  construct these Herfindahl indices using the firm size data reported in the 1851 Census  
and apply the same Herfindahl for all years, since firm-size data are not reported in later Censuses. 
This may introduce bias for some industries, such as shipbuilding, where evidence suggests that the 
average size of firms increased substantially over the study period. Some analysis industries are not 
included in this table due to lack of firm size data. 
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Table 9:  Industry agglomeration patterns excluding  London 
 

 
This table reports industry agglomeration in each year based on the index from Ellison & Glaeser 
(1997).  This approach adjusts  for the size of plants in an industry using an industry Herfindahl   
index.  We  construct these Herfindahl indices using the firm size data reported in the 1851 Census  
and apply the same Herfindahl for all years, since firm-size data are not reported in later Censuses. 
Some analysis industries are not included in this table due to lack of firm size data. 

 
 
 

In addition to the data sets described in the main text, we have collected additional 
information on a variety of other industry and city characteristics. The 1851 Census  
of Population was particularly detailed, and provides information on firm sizes in each 
industry at the national level. From  the 1907 input-output table, we  have  measures  
of the share of industry output that is sold directly to households, as well as the share 
exported abroad.  The 1907 Census of Production provides us with information on  
the total wage bill of each industry and the value of output for each industry.     These 
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are used to construct, for each industry, estimates of the ratio of labor cost to total 
sales and, together with the input-output table, the ratio of intermediate cost to total 
sales. Finally, we collect data on the distance between cities (as the crow flies) from 
Google Maps, which we will use when considering cross-city effects in Section A.4.5. 

 
Table 10:  Summary statistics for the cross-industry spillover  terms 

 
 

Main analysis matrices and industry categories   (1851-1911) 
 
 
 
 
 
 
 

),
k =i OCCki ln(Lkct) 4,263 

 
 
 
 
 
 
 
 
 

),
k= i OCCki ln(Lkct) 2,232 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: We report cross-city summary statistics for 1861-1911 because we only report in- 
strumented cross-city regression results in the main text, which means that 1851 is used 
only to construct lagged values. For the others, we report summary statistics using the full 
1851-1911 period since we report both OLS and instrumented results. 

Obs. Mean SD Min Max 
),

k =i IOinki ln(Lkct) 4,263 9.31 3.21 2.11 21.86 

),
k =i IOoutki ln(Lkct) 4,263 8.80 6.26 0.00 42.77 

),
k =i EMPki ln(Lkct) 4,263 100.8 42.51 -92.52 191.50 

 36.25 25.70 -1.10 111.10 
Alternative matrices and aggregated 

Obs. 
industry 

Mean 
categories  (1851-1911) 

SD Min Max 
),

k =i IOin1841ki ln(Lkct) 2,232 2.87 2.85 0.00 12.10 

),
k=    i IOout1841ki ln(Lkct) 2,232 3.98 3.88 0.00 11.77 

),
k =i EMPki ln(Lkct) 2,232 50.22 24.98 -29.45 95.33 

 24.90 16.60 -0.66 67.22 
Cross-city connection m 

Obs. 
easures (1861-19 

Mean SD 
11) 

Min 
 

Max 
),

k=    i IOinki 
),

j =c djc  ∗ ln(Lkjt) 3,549 237.56 72.05 65.98 389.92 

),
k=    i IOoutki 

),
j=    c djc  ∗ ln(Lkjt) 3,549 223.59 152.47 0.00 741.70 

),
k=    i EMPki 

),
j =c djc  ∗ ln(Lkjt) 3,549 2,570.20 987.25 -1,606.76 3,417.66 

),
k =i OCCki 

),
j =c djc ∗ ln(Lkjt) 3,549 926.17 631.58 -19.62 1,995.84 

MPct 3,549 15.70 0.24 14.76 16.07 
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A.3 Empirical  approach appendix 

 
A.3.1  Monte Carlo simulations 

 
We use Monte Carlo simulations to assess how well our estimation strategy performs 
in datasets displaying the size and characteristics of our data. The basic idea is to 
generate datasets that mimic our real data, but obtained from a data generating pro- 
cess (DGP) with known parameter values. We then apply our estimation strategy to 
these placebo data sets, recover parameter estimates, and compare them to the esti- 
mates obtained in the true data. This allows us to assess the ability of our estimation 
strategy to obtain unbiased results and accurate confidence   intervals. 

We begin by estimating our baseline regression specification, Eq. 18, in order to  
obtain  a  set  of  industry-year  effects  (φ̂it),  city-year  (θ̂ct)  effects,  and  estimated 
residuals ε̂cit.  These ingredients will be used to simulate new datasets in which the 
city-year and industry-year effects are held constant at the estimated values, and the 
error terms are drawn from a multivariate Normal distribution whose parameters are 
computed using the estimated  residuals. 

 
 

Step 1 – constructing the simulated error term 

We want to generate a simulated error vector that displays correlation within the 
city-year (CY), industry-year (IY) and city-industry (CI) dimensions but is uncor- 
related across these dimensions. In other words, we need to draw entire vectors of 
errors εcit from a multivariate distribution whose covariance matrix Ω has zeros if two 
observations do not share any cluster, and non-zeros if they share at least a cluster. 
We follow Cameron et al. (2011) and construct such multi-clustered covariance matrix 
Ω as the sum of four single-clustered covariance matrices.42 

 
Ω = ΩCY + ΩIY + ΩCI − 2ΩCIT 

 
42Following Cameron et al. (2011)’s notation, with three non-nested dimensions of clustering 

(denoted by A, B, C) the correct formula to compute a multi-clustered covariance matrix is ΩABC = 
ΩA + ΩB + ΩC   ΩA∩C   ΩA∩B   ΩB∩C + ΩA∩B∩C where, for instance, the entries of ΩA are non-zero 
if two observations share the same cluster along a single dimension A, while the entries of ΩA∩B 

are non-zero if two observations share the same cluster defined by the intersection of A and B.  In 
our application, notice that ΩCY ∩IY = ΩCY ∩CI = ΩIY ∩CI = ΩCIT , therefore the formula above 
collapses to four distinct terms only. 
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N cit 

 
Notice that if we  sort the observations by  a given dimension of clustering x,     

Ωx  has a block diagonal structure.   For  example,  ΩCY   consists of blocks of zeros     
if the corresponding observations are not in the same city-year cluster, and blocks 
along the diagonal with elements potentially different from zero if the corresponding 
observations are from the same city-year pair. We denoted these non-zero submatrices 
by  WCY  and assume that they are identical across clusters.        Therefore the typical 
element of W CY   is σij  = cov(εc̄it̄, εc̄jt̄) /= 0. 

We  use  the  estimated  residuals  ε̂cit   from  the  baseline  specification  to  construct 
the elements of each submatrix Wx.  For instance, taking any two industries i  and 
j,  we  set  σ̂ij   =      1      ),

CY  ε̂citε̂cjt,  where  #CY   is  the  number  of  different  city-year 
pairs. We compute the elements of ΩIY and ΩCI in the same way. We take a different 
approach to compute the elements of ΩCIY  since each cluster has only one observation, 
i.e.  there’s a single observation for each triplet city-industry-year.  All the    diagonal 
elements of ΩCIY   are set to the mean squared residual, i.e.  σ̂cit  = σ̂  =   1  ),

CIY  ε̂2   , 
where N is the number of observations. The off-diagonal elements of ΩCIY are zeros.43 

We draw 1,000 vectors of error terms from the multivariate distribution N (0, Ω) 
and rescale each vector so that it has exactly the same mean (zero) and variance as 
the  original  residuals.   The  result  of  this  procedure  is  a  simulated  error  term  ε̃SIM 

that displays correlated errors along the city-year, industry-year and city-industry 
dimensions with a variance matching that of the original estimated error term. 

 

Part 2: Simulating the data 

The next step in our procedure involves simulating a new set of data with the same 
dimensions as the original data and with known within-industry and cross-industry 
spillover parameters. 

In order to generate a simulated growth rate for the first period we begin with the 
level of initial city-industry employment from the data and use Eq. 18 to compute a 
simulated employment growth rate for each city-industry. So, for example, if we let 
β1 = 0.05 and all other β terms and τii terms to zero then growth rate of employment  
in city c and industry i  is: 

 

43As noted in Cameron et al. (2011), multi-clustered covariance matrices are not guaranteed to be 
positive semidefinite. When that happens, as in our case, such Ω cannot be used by a random number 
generator. Our solution is to replace Ω with the nearest positive semidefinite matrix computed using 
Matlab  routine  nearestSPD. 
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ic1 

 
 

g̃ic1  = 0.05 
、

IOinki ln(Lkc0) + φ̂i1  + θ̂c1  + ε̃CY −IY −CI 
 

(25) 
k =i 

where IOinki is the actual input-output weight observed in the data. The shifters 
φ̂it  and θ̂ct  are kept constant across simulations at the values estimated in the initial 
regression. 

We use this simulated growth rate to obtain Lkc1, the level of city-industry em- 
ployment in the following period, which is then fed back into Eq. 25 to obtain Lkc2, 
and so on. We repeat the process until we generate a level of employment for each 
city-industry-year triplet observed in the data. This procedure delivers a simulated 
dataset that by construction has the desired clustered error structure and the same 
number of observations as the original  data. 

 
 

Step 3: Results 

We follow this procedure to generate 1,000 datasets that look like the true data, 
but that are generated using a data generating process with known τii and β param- 
eters. We apply our estimation strategy (as in Table 2 Column 6) to each of these 
data sets and obtain a distribution of estimated τ and β parameters. 

Figure 5 displays the mean, 90% and 95% confidence intervals for the distribution 
of estimated parameters when β1 is set to 0.05 and all the other spillover parameters 
are set to zero. As an example, we also plot the distribution of estimated coefficients 
for IOin and wtn1. We can see that our estimators are asymptotically normal and 
unbiased. 

We also perform a second Monte Carlo exercise in which we set all β and τ param- 
eters to zero and then compare the distribution of estimated coefficients coming out  
of this counterfactual DGP with the estimates obtained using the real dataset. This 
allows us to asses the likelihood of observing the real dataset and the corresponding 
estimates under the null hypothesis that all parameters are zeros. This method pro- 
vides us with an alternative way to do hypothesis testing that does not rely on our 
multi-dimensional clustered standard  errors. 

Figure 6 plots the distribution of estimated IOin parameters obtained using the 
1000 simulated data sets, as well as the estimate obtained from the true data. These 
results suggests that obtaining the point estimate for IOin of 0.0622 that we got from 
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the true data (Table 2, Column 6) is extremely unlikely when the true parameter value 
is zero. The implied p-value is 0.000 and the coefficient is significantly different from 
zero at the 1% level. 

Table 11 presents the similar results for all the other coefficients of interest and 
confirms the significance levels of our baseline results from Column 6 of Table 2. This 
is reassuring because one may wonder whether our dataset is sufficiently large to con- 
sistently estimate all the parameters of interest, especially given that the observations 
are potentially correlated across multiple dimensions. 

Discussion 

These monte carlo results can help us assess how well our approach performs on 
simulated data sets sharing the same size and variance as the data used in our main 
analysis.  However,  this procedure comes with obvious limitations.   In particular,   
we are assuming that the model is correctly specified and that the error terms are 
clustered in a particular way. Thus, this simulation cannot be used to assess how well 
our procedure performs under alternative data generating processes or when standard 
errors display alternative clustering  patterns. 
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Figure 5: Simulated results when β1  = 0.05 and all other spillover parameters are  
zero 
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Figure 6: Simulated results with all parameters are set to zero vs. IOin estimate on 
real data 
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Table 11: Simulated results with all parameters are set to zero vs. parameter esti- 
mates  from  true data 

 

Simulated Data True Data 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For each of the key explanatory variables, the first two columns of this table present the mean and 
standard deviation of the distribution of coefficient estimates obtained from applying our estimation 
strategy to 1000 simulated datasets where the data have been generated with all spillover parameter 
values set to zero. Column 3 presents the coefficients estimated using the true data (as in Table 2, 
Column 6). Column 4 presents the p-value implied by comparing the coefficients estimated using 
the true data to the distribution of coefficient estimates obtained from the simulated  data. 

Variable Mean Std. Dev. Coef. p-value 
EMP .000 .001 .002 .198 
IOin .000 .012 .062 .000 
IOout .000 .011 -.018 .096 
OCC .000 .002 .007 .002 
wtn1 -.002 .023 -.094 .000 
wtn10 -.001 .018 -.124 .000 
wtn11 -.001 .017 .041 .016 
wtn12 .000 .024 -.026 .274 
wtn13 -.002 .022 -.074 .001 
wtn14 -.003 .027 -.102 .000 
wtn15 -.002 .022 -.04 .068 
wtn16 -.001 .024 -.069 .004 
wtn17 -.001 .019 -.066 .001 
wtn18 .000 .013 -.032 .016 
wtn19 -.001 .017 -.028 .092 
wtn2 -.001 .033 -.01 .752 
wtn20 -.001 .023 -.005 .84 
wtn21 -.001 .02 -.061 .002 
wtn22 -.003 .028 -.142 .000 
wtn23 -.001 .018 -.046 .011 
wtn3 -.003 .021 -.032 .123 
wtn4 -.001 .018 -.089 .000 
wtn5 -.001 .021 -.062 .003 
wtn6 -.003 .034 -.078 .023 
wtn7 .000 .021 -.058 .007 
wtn8 .000 .017 -.004 .818 
wtn9 .000 .022 -.071 .001 
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A.3.2    KP test appendix 

 
 

The standard errors in all of our main regressions are clustered along multiple dimen- 
sions. When using 2sls regressions, it is useful to be able to calculate the Kleibergen 
& Paap (2006) test statistics for under- and weak-identification using the appropri- 
ately clustered covariance matrix. The KP statistics can easily be computed using 
existing Stata routines, but only for up to two non-nested dimensions of clustering 
(Kleibergen (2010)). None of these routines can handle a higher number of clusters so 
we developed our own package, which we will make available to the benefit of other 
researchers. 

Our strategy builds on Thompson (2011) and Cameron et  al. (2011) to compute   
a multi-clustered covariance of the orthogonality condition for any number of clus- 
ters. We then use a modified version of the Stata program ranktest to compute the 
appropriate KP statistics based on this covariance matrix. It can be verified that our 
program exactly reproduces the rk statistic (under-identification) and Wald statistic 
computed by ranktest in the case of two clusters. The weak-identification test statis- 
tic is then computed by transforming the Wald  statistic into an F statistic.  Notice  
that the value of our F statistic does not exactly match the one computed by ivreg2 

due to the very small differences in the small sample  adjustment. 
 
 
 
 
 

A.4 Results  appendix 
 

A.4.1 Robustness of results to dropping cities or industries 
 
 

Figure 7 presents histograms of t-statistics for each cross-industry term obtained  
from running regressions equivalent to Column 6 of Table 2, where in each regression 
a different city is dropped from the dataset. This allows us to assess the extent to 
which our results are robust to changes in the set of cities included in the analysis. 
These results indicate that our estimates are not sensitive to dropping individual   
cities from the analysis  database. 



 

 

Figure 7: Robustness to dropping one city at a time – distribution of t-statistics 
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Figure 8 presents histograms of t-statistics for each cross-industry term obtained 
from running regressions equivalent to Column 6 of Table 2, where in each regression 
a different industry is dropped from the dataset.  This allows us to assess the extent  
to which our results are robust to changes in the set of industries included in the 
analysis. We can see that in general our estimated coefficients are not sensitive to 
dropping individual industries.  However,  this does not apply when looking at the   
IO out coefficient. The top-right graph shows that when we drop shipbuilding from 
the data, the IO out coefficient changes substantially. In particular, the estimated 
coefficient changes from negative and occasionally statistically significant to positive 
and not statistically significant. This suggests that the negative coefficient estimated 
on the IO out coefficient is driven entirely by the Shipbuilding industry. This is an 
unusual industry because presumably it can only operate in coastal cities or those 
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with access to a major navigable river. Thus, the IO out results obtained when 
dropping this industry seem more reasonable. These results suggest that in general  
the impact of local customers is weakly positive. 

Overall, the results in Figure 8 indicate that our estimates are much more sen- 
sitive to dropping industries than they are to dropping cities. This suggests that 
heterogeneity across industries is more important than heterogeneity across   cities. 

 

Figure 8: Robustness to dropping one industry at a time – distribution of t-statistics 

IOin results IOout results 
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A.4.2 Heterogeneous  effects 

 
In this section we look at heterogeneity in the pattern of cross-industry and within- 
industry effects across different industries. We begin by considering heterogeneous 
cross-industry effects. Specifically, we run two alternative versions of Equation 18, 
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i 
、 

k 

 

 
6 ln(Lict+1) = τ̃ii ln(Lict) + β CONNECTki ln(Lkct) + θct + χit + eict (26) 

k/=i 

 

 

6 ln(Li/=k ct+1) = τ̃ii ln(Lict) + β  CONNECTki ln(Lkct) + θct + χit + eict (27) 

 
where CONNECTki is one of our four measures of cross-industry connections. Equa- 
tion 26 allows us to estimate industry-specific coefficients βi describing how much 
each industry i benefits from cross-industry connections. This specification can be 
estimated using the same approach as was used for our baseline regressions.   Us-   
ing Equation 27, we estimate industry-specific coefficients βk that reflect the extent  
to which industry k  generates spillovers that benefit other industries.  Estimating   
this value requires a different approach to avoid conflating the within and between 
impact of industry k when estimating βk. Specifically, we run separate regressions 
corresponding to Equation 27 for each industry k. In each of these regressions, only 
employment in industry k (interacted with a cross-industry connection measure) is 
included as an explanatory variable and observations from industry k are not included 
in the dependent  variable. 

Once the industry-specific βi and βk terms are estimated, we compare them to 
available  measures of industry characteristics:  firm size in each industry,  the share  
of output exported, the share of output sold to households, the industry labor cost 
share, and the industry intermediate cost share. In each case we run a simple uni- 
variate regression where the dependent variable is the estimated industry-specific 
cross-industry spillover coefficient and the independent variable is one of the industry 
characteristics. Univariate regressions are used because we are working with a rela- 
tively small number of observations. These results can provide suggestive evidence 
about the characteristics of industries that produce or benefit from different types of 
cross-industry spillovers, but because of the small sample size we will not be able to 
draw any strong conclusions. 

Table 12 describes the characteristics of industries that benefit from cross-industry 
connections. In rows 1-2, we see evidence that small firm size in an industry is asso- 
ciated with more cross-industry spillover benefits, but this pattern is not statistically 
significant at standard confidence levels.      The only strong result coming out of this 
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table is that industries that benefit from connections to other local industries with 
similar labor pools tend to have a larger labor cost share relative to overall industry 
sales, as well as a smaller intermediate cost share. This seems like a very reasonable 
result which provides some additional confidence that the estimates we have obtained 
are reasonable. 

 
Table 12: Features of industries that benefit from each type of cross-industry spillover 

 
 

Coefficients from univariate regressions 
DV: Estimated industry-specific βi  coefficient 

Spillovers channel: IO-in IO-out EMP OCC 
Average firm size -0.210 -0.902 -0.0353 -0.209 

 (0.319) (0.559) (0.0350) (1.122) 

Median worker’s firm size -0.0179 -0.108 -0.00289 -0.0441 
 (0.0377) (0.0651) (0.00417) (0.131) 

Share of industry output 0.0185 -0.122 -0.0163 -0.313 
exported abroad (0.0982) (0.178) (0.0114) (0.333) 

Share of industry output 0.0300 0.121 0.00746 0.170 
sold to households (0.0443) (0.0864) (0.00519) (0.150) 

Labor cost/output ratio -0.137 -0.185 -0.00769 0.426** 
 (0.147) (0.280) (0.0100) (0.191) 

Intermediate cost/output ratio 0.0196 0.0819 -0.000385 -0.373*** 
 (0.109) (0.194) (0.00737) (0.125) 

Estimated coefficients from univariate regressions.  Standard errors in parentheses.  *** p<0.01, 
** p<0.05, * p<0.1. The dependent variable in each regression is the estimated βi coefficient 
from Eq. 26. Firm size data comes from the 1851 Census of Population. The share of industry 
output exported or sold to households is from the 1907 input-output table. The labor cost share 
is constructed from industry wage bills from the 1907 Census of Manufactures. The intermediate 
cost share is based on the 1907 input-output table. We do not report robust standard errors 
because these generate smaller confidence intervals, probably due to small-sample bias. We have 
also explored regressions in which we weight results by the inverse of the standard error of each 
estimated within-industry coefficient in order to account for the precision of those estimates and 
these deliver similar results. 

 
 
 

Table 13 describes the characteristics of industries that produce cross-industry 
connections. These results also suggest that industries with smaller firm sizes produce 
more beneficial cross-industry spillovers, but again, these results are not statistically 
significant.      As before, the only clear relationship that we observe is that industries 
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with a greater labor cost share (and smaller intermediate cost share) relative to overall 
sales produce more cross-industry benefits to occupationally similar  industries. 

 
Table 13:  Features of industries that produce each type of cross-industry  spillover 

 
Coefficients from univariate regressions 

DV: Estimated industry-specific βk  coefficient 
Spillovers channel: IO-in IO-out EMP OCC 
Average firm size -1.496 -3.899 0.0487 -1.022 

 (1.239) (6.452) (0.174) (2.133) 

Median worker’s firm size -0.163 -0.626 0.00115 -0.149 
 (0.147) (0.752) (0.0206) (0.250) 

Share of industry output 0.0742 -0.797 0.00417 -0.341 
exported abroad (0.407) (1.994) (0.0539) (0.648) 

Share of industry output 0.149 0.0470 -0.0169 0.418 
sold to households (0.201) (0.905) (0.0241) (0.280) 

Labor cost/output ratio -0.324 0.651 -0.0251 0.983* 
 (0.625) (3.212) (0.0440) (0.524) 

Intermediate cost/output ratio -0.197 -0.0637 0.0142 -0.870** 
 (0.420) (2.261) (0.0311) (0.338) 

Estimated coefficients from univariate regressions.   The dependent variable in each regression is   
the estimated βk  coefficient from Eq.  27.  Standard errors in parentheses.  *** p<0.01, **    p<0.05, 
* p<0.1. Firm size data comes from the 1851 Census of Population.  The share of industry  
output exported or sold to households is from the 1907 input-output table. The labor cost share 
is constructed from industry wage bills from the 1907 Census of Manufactures. The intermediate 
cost share is based on the 1907 input-output table. We do not report robust standard errors 
because these generate smaller confidence intervals, probably due to small-sample bias. We have 
also explored regressions in which we weight results by the inverse of the standard error of each 
estimated within-industry coefficient in order to account for the precision of those estimates and 
these deliver similar results. 

 
 
 

Next, we undertake a similar exercise with our estimated within-industry coeffi- 
cients. In Table 14 we consider some of the industry characteristics that may be re- 
lated to the range of different within-industry spillover estimates we observe. Columns 
1-2 focus on the role of firm size using two different measures. We observe a posi- 
tive relationship between firm size in an industry and the strength of within-industry 
spillovers, but this results is not statistically significant due to the small number of 
available observations. There is also weak evidence that more labor intensive indus- 
tries benefit more from within-industry spillovers. 
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Table 14:  Features of industries that benefit from within-industry  spillovers 
 
 

DV: Estimated industry-specific within-industry spillover  coefficients 
Average firm size 0.289 

(0.196) 
Median  worker’s firm size 0.0253 

(0.0236) 
Exports share of industry output 0.0428 

(0.0708) 
Households  share  of industry output  -0.0384 

(0.0314) 
Labor cost/output ratio 0.136 

(0.0983) 
Intermediate cost/output ratio -0.0115 

(0.0755) 
Observations 20 20 23 23 16 16 
R-squared 0.107 0.060 0.017 0.066 0.121 0.002 
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The number of observations 
varies because the explanatory variables are drawn from different sources and are not available for 
all industries. The within coefficients come from the specification used in Column 6 of Table 2. 
Firm size data comes from the 1851 Census of Population. The export’s and household’s share 
of industry output come from the input-output table. Total labor cost and total output values 
come from the 1907 Census of Production. Intermediate cost is constructed based on data from 
the 1907 Input-Output matrix. We do not report robust standard errors because these generate 
smaller confidence intervals, probably due to small-sample bias. We have also explored regressions 
in which we weight results by the inverse of the standard error of each estimated within-industry 
coefficient in order to account for the precision of those estimates and these deliver similar results. 

 
 
 
 
 
 
 
 
 
 
 
 

A.4.3 Robustness: Alternative functional forms 
 
 

In this table we replace the logarithms on the right-hand side of the estimating equa- 
tion with plausible alternative functional forms based on either the second root or 
fifth root. These results show that adjusting the functional form in this way has little 
impact on the estimated  results. 
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Table 15:  Regression results with alternative functional forms 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Multi-level clustered standard errors by city-industry, city-year, and industry-year in paren- 
thesis. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. A full set of industry-specific 
within terms, industry-year and city-year effects are included in all regressions but not dis- 
played. Regressions in Columns 2 and 4 instrument the within terms with lagged values. 
Regressions in Columns 3 and 5 instrument both the within and between terms with lagged 
values. Acronyms: wtn = within, btn = between. “KP under” denotes the test statistic for 
the Lagrange Multiplier underidentification test based on Kleibergen & Paap (2006). “KP 
weak” denotes the test statistic for a weak instruments test based on the Kleibergen-Paap 
Wald statistic. 

 
 
 

A.4.4 Robustness: Alternative connections matrices 

 
Next, we revisit the analysis using some alternative measures of inter-industry con- 
nections. In particular, we use an alternative matrix of input-output connections 
constructed by Horrell et al.  (1994) for  Britain  in 1841.  Generating  results with 
this alternative matrix, which comes from before the study period, can help address 
concerns that the results we find are dependent on the specific set of matrices we 
consider or are due to a process of endogenous inter-industry connection formation. 
The cost of using this matrix is that we are forced to work with a smaller set of 12 
more aggregated industry categories.44 

Because we are now working with a smaller number of industry categories, we focus 
 

44The industry categories are:  “Mining & quarrying,” “Food, drink & tobacco”, “Metals & Ma- 
chinery,” “Oils, chemicals & drugs,” “Textiles, clothing & leather goods,” “Earthenware & bricks,” 
“Other manufactured goods,” “Construction,” “Gas & water,” “Transportation,” “Distribution,” 
and “All other services.” 

FF:  Square root   Fifth root  
 (1) (2) (3) (4) (5) (6) 

IOin 0.0017*** 0.0016*** 0.0016*** 0.0779*** 0.0651*** 0.0659*** 
 (0.0005) (0.0005) (0.0005) (0.0205) (0.0187) (0.0190) 

IOout -0.0003 -0.0004 -0.0004 -0.0098 -0.0149 -0.0173 
 (0.0004) (0.0004) (0.0004) (0.0126) (0.0125) (0.0127) 

EMP -0.0000 0.0000 0.0000 -0.0001 0.0022 0.0019 
 (0.0001) (0.0000) (0.0001) (0.0021) (0.0015) (0.0017) 

OCC 0.0003*** 0.0003* 0.0003** 0.0108*** 0.0085** 0.0088** 
 (0.0001) (0.0001) (0.0001) (0.0036) (0.0040) (0.0040) 

Observations 4,263 3,554 3,554 4,263 3,554 3,554 
Estimation ols 2sls 2sls ols 2sls 2sls 
Instrumented none wtn wtn-btn none wtn wtn-btn 
KP under  20.74 20.92  26.73 28.71 
KP weak  103.9 62.81  79.44 49.83 
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on regressions that incorporate one spillover channel at a time. Table  16 describes  
the results. As in the main results, we observe positive effects occurring through the 
IOin channel and these results are generally statistically significant. There is also 
evidence that industries may have benefited from the presence of local buyers, but 
this result is clearly sensitive to the underlying set of industries used, so it should be 
interpreted with some caution. There is also some evidence of benefits through the 
presence of occupationally similar local industries. 

 
Table 16:  Alternative matrix regressions with one channel at a  time 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Multi-level clustered standard errors by city-industry, city-year, and industry-year in parenthesis. *** 
p<0.01, ** p<0.05, * p<0.1. A full set of within regressors, city-time and industry-time effects are in- 
cluded in all regressions but not displayed. 2SLS regressions use lagged instruments. Note that the number 
of observations falls for the instrumented regressions because the instruments require a lagged employment 
term. Thus, data from 1851 are not available for these regressions. Acronyms: wtn = within,  btn = 
between. “KP under id.” denotes the test statistic for the Lagrange Multiplier underidentification test 
based on Kleibergen & Paap (2006). “KP weak id.” denotes the test statistic for a weak instruments test 
based on the Kleibergen-Paap Wald  statistic. 

 (1) (2) (3) (4) (5) (6) 
IOin1841 0.0490*** 0.0346** 0.0421**    

 (0.0134) (0.0152) (0.0164)    
IOout1841    0.0383*** 0.0555*** 0.0570*** 

    (0.0141) (0.0151) (0.0152) 
Observations 2,232 1,860 1,860 2,232 1,860 1,860 
Estimation ols 2sls 2sls ols 2sls 2sls 
Instrumented none wtn wtn-btn none wtn wtn-btn 
KP under id.  326.29 263.61  351.47 297.76 
KP weak id.  292.93 179.49  366.68 239.76 

 (7) (8) (9) (10) (11) (12) 
EMP 0.0028 0.0050*** 0.0051**    

 (0.0019) (0.0019) (0.0020)    
OCC    0.0058* 0.0049 0.0048 

    (0.0035) (0.0041) (0.0041) 
Observations 2,232 1,860 1,860 2,232 1,860 1,860 
Estimation ols 2sls 2sls ols 2sls 2sls 
Instrumented none wtn wtn-btn none wtn wtn-btn 
KP under id.  493.03 445.87  301.94 308.52 
KP weak id.  494.71 391.98  349.01 262.24 
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A.4.5 Robustness: Cross-city effects 

 
There is substantial variation in the proximity of cities in our database to other nearby 
cities. Some cities, particularly those in Lancashire, West Yorkshire, and the North 
Midlands, are located in close proximity to a number of other nearby cities. Others, 
such as Norwich, Hull, and Portsmouth are relatively more isolated. In this section, 
we extend our analysis to consider the possibility that city-industry growth may also 
be affected by forces due to other nearby  cities. 

We consider two potential channels for cross-city effects. First, industries may 
benefit from proximity to consumers in nearby cities. This market potential effect has 
been suggested by Hanson (2005), who finds that regional demand linkages play an 
important role in generating spatial agglomeration using modern U.S. data. Second, 
industries may benefit from spillovers from other industries in nearby towns, through 
any of the channels that we have identified. We analyze these effects using the more 
detailed industry categories from Section 5. 

We begin our analysis by collecting data on the distance (as the crow flies) between 
each of the cities in our database, which we call distanceij . Using these, we construct 
a measure for the remoteness of one city from another dij = exp(−distanceij ).45 Our 
measures of market potential for each city is  then, 

MPct = ln 

 

POPjt ∗ dcj 

 

. 
j =c 

 
where POPjt is the population of city j. This differs slightly from Hanson’s approach, 
which uses income in a city instead of population, due to the fact that income at the 
city level is not available for the period we   study. 

We also want to measure the potential for cross-industry spillovers occurring across 
cities. We measure proximity to an industry i in other cities as the distance-weighted 
sum of log employment in that industry across all other cities. Our full regression 
specification, including both cross-city market potential and spillover effects, is then, 

 
 

6 ln(Lict+1) = τ̃ii ln(Lict) 
 

 

45This distance weighting measure is motivated by Hanson (2005).  We have also explored using 
dij = 1/distanceij as the distance weighting measure and this delivers similar results. 
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、
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+    β9MPct + log(W ORKpopct) + θc + χit + Eict. 

 
 
 

One difference between this and our baseline specification is that we now  include  
city fixed effects (θc) in place of city-year effects because city-year effects would be 
perfectly correlated with the market potential measure. To help deal with  city-size  
effects, we also include the log of WORKpopct, the working population  of city c in  
period t.  To simplify the exposition and in analogy with the previous section, we will 
refer to the cross-city term 

),
k =i IOinki 

),
j=c djc ∗ ln(Lkjt) as IOin ∗ d, and similarly 

for the other cross-city terms IOout ∗ d, EMP ∗ d, and OCC   ∗ d. 
The results generated using this specification are shown in Table 17. The first 

thing to take away from this table is that our baseline results are essentially unchanged 
when we include the additional cross-city terms. The city employment term in the 
fifth column reflects the negative growth impact of city size. The coefficients on the 
market potential measure is always positive but not statistically   significant. 
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Table 17: Regression results with cross-city variables 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Multi-level clustered standard errors by city-industry, city-year, and industry-year in parenthesis. 
Significance levels: *** p<0.01, ** p<0.05, * p<0.1. A full set of within regressors, city-time and 
industry-time effects are included in all regressions but not displayed. All regressions instrument 
the within and between regressors with lagged instruments. Acronyms: wtn = within, btn = 
between. “KP under” denotes the test statistic for the Lagrange Multiplier underidentification test 
based on Kleibergen & Paap (2006). “KP weak” denotes the test statistic for a weak instruments 
test based on the Kleibergen-Paap Wald statistic. 

 
 
 
 

The results do not provide statistically significant evidence that cross-city spillovers 
matter through any of the channels that we measure. However, these results are im- 
precisely measured.  The coefficients estimated on the IOin ∗ dist term suggest that  
a one standard deviation increase in the presence of suppliers in other nearby cities 
could increase city-industry growth by 6.1-18.3%. The coefficients on the EMP term 
are consistent with effects of a similar magnitude. Thus, we should not rule out im- 
portant cross-city effects based on these results. However, it is clear that omitted 
cross-city effects are not driving our findings regarding the importance of within-city 
cross-industry agglomeration forces. 

 (1) (2) (3) 
IOin 0.0571*** 0.0604*** 0.0586*** 

 (0.0144) (0.0154) (0.0166) 
IOout -0.0248** -0.0252** -0.0257** 

 (0.0109) (0.0108) (0.0111) 
EMP -0.0027 -0.0029 -0.0029 

 (0.0018) (0.0018) (0.0018) 
OCC 0.0064* 0.0062* 0.0061* 

 (0.0033) (0.0034) (0.0034) 
City employment -0.3377*** -0.3295*** -0.3321*** 

 (0.0762) (0.0753) (0.0767) 
Market Potential 0.1592  0.1176 

 (0.1611)  (0.2631) 
IOin*dist  0.0012 0.0004 

  (0.0017) (0.0024) 
IOout*dist  -0.0008 -0.0007 

  (0.0010) (0.0010) 
EMP*dist  0.0002 0.0001 

  (0.0001) (0.0001) 
OCC*dist  -0.0001 -0.0001 

  (0.0002) (0.0002) 
Observations 3,549 3,549 3,549 
KP under 19.34 20.79 19.38 
KP weak 2.07 2.3 2.07 
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A.4.6 Additional results for the city-size effects 

 
We may be concerned that the results described in Table 4 are driven in part by the 
inclusion of industry-time effects in the regressions used to obtain the θct terms. One 
way to assess this is to estimate alternative city-time effects   from, 

 
6 ln(Lict+1) = θct + χit + eict , (28) 

 
and then estimate, 

 

θFE = c0 + c1 ln(WORKpopct) + fct. (29) 
 
Because the only difference between the specification in Equation 18 and that in 
Equation 28 is the inclusion of the within and cross-industry agglomeration terms,   
we can be sure that any differences between the estimated θct  terms and the θFE 

terms are due to these agglomeration  forces. 

The results in Table 18 mirror those shown in Table 4 except that the relationship 
between city size and the estimated  θct   coefficients are now  compared  against    the 
relationship between city size and the estimated θFE coefficients  from  Eq.   29.  In 
essence, this comparison is ensuring that the convergence results we obtain are not 
driven by the inclusion of industry-year effects in the regressions. We  can see that  
the results in Table 18 are very similar to the results in Table 4, which suggests that 
the inclusion of industry-year effects is not playing an important role in generating 
our results. 
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Table 18: Measuring the aggregate strength of the agglomeration forces against an 
estimated baseline 

 

 
Column 1 presents the a1 coefficients from estimating Equation 19 for each decade (cross-sectional 
regressions).  Column 2 presents the decadal divergence rates implied by  these coefficients.  Col-  
umn 3 presents the c1 coefficients from estimating Equation 29 and Column 4 presents the decadal 
divergence rates implied by these coefficients. Column 5 gives the aggregate strength of the diver- 
gence force represented by  the agglomeration economies, which is equal to the difference between  
the decadal convergence coefficients. The results in the top panel are based on city-time effects 
estimated from unweighted regressions while the results in the bottom panel are based on city-time 
effects estimated using weighted regressions based on city-industry employment in    1851. 


