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Abstract

This paper studies the sources of agglomeration economies in cities. We begin
by incorporating within and cross-industry spillovers into a dynamic spatial
equilibrium model in order to obtain a panel data estimating equation. This
gives us a framework for measuring a rich set of agglomeration forces while
controlling for a variety of potentially confounding effects. We apply this es-
timation strategy to detailed new data describing the industry composition of
31 English cities from 1851-1911. Our results show that industries grew more
rapidly in cities where they had more local suppliers or other occupationally-
similar industries. We find no evidence of dynamic within-industry effects, i.e.,
industries generally did not grow more rapidly in cities in which they were al-
ready large. Once we control for these agglomeration forces, we find evidence
of strong dynamic congestion forces related to city size. We also show how to
construct estimates of the combined strength of the many agglomeration forces
in our model. These results suggest a lower bound estimate of the strength of
agglomeration forces equivalent to a city-size divergence rate of 1.0-2.3% per
decade. JEL Codes: R1,N93, O3
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1 Introduction

What are the key factors driving city growth over the long term? One of the leading
answers to this question, dating back to Marshall (1890), is that firms may benefit
from proximity to one another through agglomeration economies. While compelling,
this explanation raises further questions about the nature of these agglomeration
economies. Do firms primarily benefit from proximity to other firms in the same
industry, or, as suggested by Jacobs (1969), is proximity to other related industries
more important? How do these forces vary across industries? What role does city
size play in industry growth? How can we separate all of these features from the fixed
locational advantages of cities? These are important questions for our understanding
of cities. Their answers also have implications for the design of place-based policies,
which can top $80 billion per year in the U.S. and are also widely used in other

countries.!

Not surprisingly, there is a large body of existing research exploring the nature
of agglomeration economies. This study builds on two important strands of this
literature.> One approach uses long-differences in the growth of city-industries over
time and relates them to rough measures of initial conditions in a city, such as an
industry’s share of city employment or the Herfindahl index over major city-industries
(Glaeser et al. (1992), Henderson et al. (1995)). The main concern with this line of
research is that it ignores much of the richness and heterogeneity that are likely to
characterize agglomeration economies. A more recent approach allows for a richer set
of inter-industry relationships using connection matrices based on input-output flows,
labor force similarity, or technology spillovers. These connections are then compared

to a cross-section of industry locations (Rosenthal & Strange (2001), Ellison et al.

IThe New York Times has constructed a database of incentives awarded by cities, coun-
ties and states to attract companies to locate in their area. The database is available at
http://www.nytimes.com/interactive/2012/12/01/us/government-incentives.html.

2There are several other strands of the agglomeration literature which are less directly related to
this paper. One strand focuses on addressing identification issues by comparing outcomes in similar
locations, where some locations receive a plausibly exogenous shock to the level of local economic
activity (Greenstone et al. (2010) and Kline & Moretti (2013)). This approach has the advantage
of more cleanly identifying the causal impact of changes in local economic activity, but it may also
be less generalizable and more difficult to apply to policy analysis. Thus, we view this line of work
as complementary to our approach. Other alternative approaches use individual-level wage data
(Glaeser & Mar (2001), Combes et al. (2008), Combes et al. (2011)) or firm-level data (Dumais
et al. (2002), Rosenthal & Strange (2003), Combes et al. (2012)) to investigate the effects of city
size. See Rosenthal & Strange (2004) and Combes & Gobillon (2015) for reviews of this literature.


http://www.nytimes.com/interactive/2012/12/01/us/government-incentives.html

(2010), Faggio et al. (2013)).> A limitation of this type of static exercise is that it is

more difficult to control for locational fundamentals in cross-sectional regressions.

Our approach builds on these previous studies, but also seeks to address some of
the remaining issues facing the literature. Specifically, this study contributes to the
existing literature in five ways. First, while this is primarily an empirical paper, we be-
gin by introducing a new dynamic spatial equilibrium model of city-industry growth.
This model incorporates a rich set of within- and cross-industry spillover effects,
which allows us to ground our study of these agglomeration forces in a theoretically-

consistent framework.*

Second, motivated by the theory, we introduce a panel-data econometric approach
for estimating the magnitude of agglomeration forces.> The key feature of our ap-
proach is that we are able to estimate the importance of dynamic agglomeration
forces related to industry scale, cross-industry connections, and city-size in a uni-
fied framework, while dealing with fixed locational fundamentals and time-varying
industry-specific shocks. Previous research has examined these elements separately,
but we are not aware of existing work that studies all of these effects in a unified
way. In addition, the use of panel data offers some well-known advantages relative
to the cross-sectional or long-difference methods used in most existing work. How-
ever, applying this approach to study agglomeration economies requires overcoming
challenges related to identification and correlated errors. Our study makes progress
in this direction, allowing us to address some of the identification concerns present in
previous work. The approach that we develop can potentially be applied in a wide
range of settings in which consistent panels of city-industry employment data can be

constructed.

Third, to implement our approach, we construct a rich dataset describing the

evolution of city-industry employment over six decades.® These new data, which we

3These studies are part of a broader literature looking at the impact of inter-industry connections,
particularly through input-output linkages, that includes work by Amiti & Cameron (2007) and
Lopez & Sudekum (2009).

“In arecent handbook chapter, Combes & Gobillon (2015) highlight the need to ground empirical
studies of agglomeration economies in theory.

>Our panel data approach builds on previous work by Henderson (1997) and Dumais et al. (1997).
See also Combes (2000) and Dekle (2002). A panel data approach is also used in a recent working
paper by Lee (2015) which uses data on U.S. manufacturing industries from 1880-1990 to study
static agglomeration forces.

%The availability of detailed long-run city-industry data has been a major impediment to previous

work on agglomeration economies. The database constructed in this study helps address this defi-
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digitized from original sources, cover 31 of the largest English cities (based on 1851
population) for the period 1851-1911. This empirical setting offers several important
advantages. One advantage is the very limited level of government regulation and
interference in the British economy during this period due to the strong free-market
ideology that dominated British policymaking and the small size of the central gov-
ernment.” A second important advantage is that we are able to study agglomeration
using consistent data over many decades. Studying agglomeration over a long time
period is desirable because the time needed to build new housing, factories, and in-
frastructure means that it may take years for cities to respond to changes in local
productivity levels. Our data are also quite detailed; they come from a full census
and cover nearly the entire private sector economy, including manufacturing, trans-
portation, retail, and services. A third advantage is that we are able to study a long-
established urban system. This contrasts with the U.S., where the open western
frontier meant that the U.S. city system was in transition until the middle of the 20th
century.® Our setting was also characterized by a relatively open economy with high

levels of migration into and between cities.’

Fourth, we provide new results on the strength of different types of agglomeration
and congestion forces for one empirical setting. We find that (1) cross-industry effects
were important, and occurred largely through the presence of local suppliers and oc-
cupationally similar labor pools, (2) the net effect of within-industry agglomeration
forces was generally negative, and (3) city size had a clear negative relationship to
city growth. The presence of local buyers appears to have had little positive influence
on city-industry growth.  We provide a variety of tests examining the robustness of

ciency. Recently, other databases of this type have been developed using data from the U.S. County
Business Patterns survey by Duranton et al. (2014) and from the U.S. Census of Manufacturers by
Lee (2015) and others.

"This contrasts with modern settings, where the list of confounding factors includes place-based
government policies, local land-use regulations such as zoning, environmental policies that vary
across locations, local tax incentives, variation in the local burden of national taxation, as well as
many other types of regulation. These factors can also affect city growth, making it more difficult
to identify and quantify the role of agglomeration forces. To cite some examples, Kline & Moretti
(2013) describe the impact of place-based government policies in the U.S. The role of local land
use regulations is highlighted by Gyourko et al. (2008). Local environmental policies are studied
by Henderson (1996) and Chay & Greenstone (2005), among others. Greenstone & Moretti (2003)
describe the impact of local tax incentives, while Albouy (2009) describes how federal tax incentives
distort urban growth.

8See Desmet & Rappaport (Forthcoming).  In contrast, Dittmar (2011) finds that Zipf’s Law
emerged in European cities between 1500 and 1800, well before the beginning of our study period.

°See, e.g., Baines (1994) and Long & Ferrie (2004).



these results. For example, we show that our main results are robust to dropping
particular cities or particular industries. They are also robust to using an alternative
set of matrices measuring cross-industry connections, alternative functional forms for
modeling spillovers, or alternative industry definitions. We also show that incorpo-
rating cross-city effects, such as market potential or cross-city industry spillovers, has

little impact on our results.

Fifth, we introduce an approach for measuring the combined strength of the many
cross-industry agglomeration forces represented in our model. This is valuable because
it provides a convenient way to assess the aggregate strength of these effects and may
be useful for studying how these effects vary in different circumstances. Our results
suggest that a lower-bound estimate of the agglomeration forces captured by our
empirical model are equivalent to a decadal city-size divergence rate of 1.0-2.3%. To
our knowledge this is the first paper to show how the combined strength of these

many cross-industry connections can be measured.

The next section presents our theoretical framework, while Section 3 describes the
data. The empirical approach is discussed in Section 4. Section 5 presents the main
results, while Section 6 examines the impact of city size and shows how this can be
used to calculate the aggregate strength of the agglomeration forces in our model.
Section 7 concludes.

2 Theory

While this paper is primarily empirical, a theoretical model is useful in disciplining the
empirical specification. Grounding our analysis in theory can also help us interpret
the results while being transparent about potential concerns.

Our theory focuses on dynamic agglomeration, i.e., localized spillovers that affect
technology and thereby influence industry growth rates. In this respect it is related to
the endogenous growth literature (e.g., Romer (1986)) and in particular, to the work
of Lucas (1988), who emphasized the important role that localized learning in cities
was likely to play in economic growth. This is not the only potential agglomeration
force that may lie behind our results; alternative models may yield an estimation

equation that matches the one we apply. However, because we are interested in
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dynamic agglomeration, focusing on technology growth is a natural starting point.'’

The model is dynamic in discrete time. Technology advances over time as a result
of two forces. First, firms undertake R&D in order to improve their  productivity.
Second, some of the new innovations produced by R&D undertaken by one firm spill
over to affect other local firms. These spillovers can occur both within and across
industries and the extent of the spillovers depends on a matrix of parameters reflecting
the strength of within and inter-industry connections. These spillovers are external

to firms, so they will not influence the static allocation of economic activity.

At the end of each period, technology diffuses across firms in the same city and in-
dustry. This approach, which follows Desmet & Rossi-Hansberg (2014), substantially
simplifies the dynamic elements of the model because firm R&D decisions will only
affect firm profits in the current period. By simplifying the dynamics in this way, we

are able to build a tractable model with a rich set of inter-industry connections.

As is standard in urban theories, we assume that goods are freely traded across
locations and workers are free to move between cities. To keep things simple, our
baseline model omits some additional features, such as savings and capital investment,

or intermediate inputs, that one might want to consider.!!

We begin by solving the allocation of employment across space in a particular
period. We then consider how the allocation in one period affects the evolution of
technology and, thus, the allocation of employment in the next period, through knowl-
edge spillovers. Most of the interesting features of the model are on the producer’s

side, but we begin with a very brief introduction of the consumers.

19An alternative approach is to study static agglomeration, i.e., how the level of employment in
one industry affects the level of employment in another, or alternatively, how growth in one industry
affects growth in another. Some discussion of static vs. dynamic agglomeration forces is provided
in Combes & Gobillon (2015). Lee (2015) provides a recent example of a study focusing on static
agglomeration forces. He finds that static localized inter-industry spillovers were small and declining
in the U.S. across the 20th century. This suggests that static agglomeration forces are unlikely to
be behind the growth of cities during this  period.

"Tn the Appendix, we explore the impact of adding capital or intermediate goods. In general this
does not change the basic estimating equation that we obtain as long as we maintain the assumption
of free mobility across locations, though it can change the interpretation of the parameter estimates.



2.1 Consumption

The model is populated by two types of agents, workers and landlords. There is a con-
tinuum of workers in the model, each endowed with one unit of labor. Workers have
the option of paying a fixed cost, in terms of labor, in order to become entrepreneurs
and open up their own firm. The utility function for both workers and landlords is, U

Foue P where u, is utility in period t. There is no saving, so utility is
maximized period-by-period.'? Utility in any period depends on consumption of real

estate 4., and a composite of goods G,; according to a Cobb-Douglas utility function:

W ®

where v € (0, 1). There are i types of goods available, each produced by a separate
industry, and consumers have CES preferences over these goods, so,

where x;., is consumption of type i goods by a consumer in city ¢, o is the elasticity
of substitution across goods and y; > 0 is a demand shifter for industry i. The
corresponding price index, P, takes the standard form, with the price of each type of
good denoted by p;,. Note that, with free trade, goods prices are not indexed by c.
The index of goods prices is normalized to P, = 1. The price of housing is denoted
by g.. Consumers maximize their utility subject to their budget constraint. This
utility maximization problem yields the expected demand equations for goods and
real estate.

Workers have access to a time-varying outside option utility v;. We can think of
this as the utility offered by remaining in the rural sector or immigrating to another
country. In equilibrium, this implies that the indirect utility function of workers must

satisty,

Vee = In(wer) — vIn(ge) = vy 2)

12Adding savings would complicate the model, but as long as capital is mobile across locations
it will not alter our basic estimating equation, nor will it influence our empirical results, which are
derived from a comparison across locations withina country.



Landlords receive income from land and other local resources. To keep things

simple, we think of these landlords as living outside of the cities we study.

2.2 Production

Workers can decide to become entrepreneurs by paying a fixed cost ', denominated
in units of labor, to open a firm. The measure of firms in a city-industry is denoted
by ni.. We think of firms in a city as being started by workers from that city in the
previous period, so if they enter in industry i they begin with the initial technology
level available in that industry in that city, denoted a;.s,. Firms then invest in R&D

to obtain a new technology level, a;.;, which is used in  production.

Firms compete on perfectly competitive input and output markets. The produc-

tion function for firm £ in industry 7 and city c is,

_ l—a1—a2—p
Vi = Qicpil %, HEG R B, (3)

where a;. is technology, L;.; is labor input, R;.s is the resource input, H,. is real
estate input, £;.; is entrepreneurial effort, a; + o, + f < 1, and a4, az, > 0.
Entrepreneurial effort is supplied by workers who choose to open a firm. Each
entrepreneur has access to only one unit of entrepreneurial effort, so in equilibrium
Ei;= 1 for all firms. This reflects a span-of-control limitation for firm owners."?
This span-of-control limitation plays an important role in the model; by introducing
decreasing returns to scale at the firm level it pins down firm size. As we will see, this
implies that growth in city-industry employment is driven by growth in the number

of firms.

Labor is the only production input that is mobile across locations.!'* Including
real estate in the production function is not central to the model but is done for

completeness.

I3Note that entrepreneurs are not required to trade off entrepreneurial effort against labor effort.
Instead, all workers have access to one unit of each type of input, but entrepreneurial effort can only
be used by workers that choose to open a firm.

4Adding additional mobile inputs, such as capital, would not substantially affect the estimating
equation that we obtain.



2.3 Land and natural endowments

Locational fundamentals play a central role in the debate over the determinants of
city size, so it is important that they be incorporated into the theory (see, e.g., Davis
& Weinstein (2002)). In our model, locational fundamentals are represented by fixed
industry-specific city resource endowments, R:.."5 1In equilibrium, the markets for
local resources clear, so fi"gt Ricpdf = E,-C. Resources play an important role in the
model; by introducing decreasing returns at the city-industry level, they allow firms
in the same industry to be active in many locations with different technology levels,
even when trade is free, labor is mobile, and firms are perfectly competitive. They
are also important in the context of the empirical analysis, because they make the

impact of locational fundamentals in the estimation strategy explicit.

Real estate, which is used by both workers and firms, represents a congestion
force in our theory. We model the price of real estate as an increasing function of the

number of workers in a city and the amount of land used by producers:

Get =J  Let, Hicr . 4)
i f
For our purposes, it is not necessary that we take a stand on the particular functional
form of this relationship.

2.4 Timing

Figure 1 describes the timing in the model. At the beginning of each period, firms
in the same city-industry share a common and observable technology level denoted
Eicﬂ. Given these, workers choose where to locate and whether to pay a fixed cost to
become an entrepreneur and open a firm. After workers have moved and firms have
opened, firms then choose a level of R&D investment and realize a new technology
level a;.i. Once technology is realized, firms choose how many workers and other
inputs to hire and they produce and sell their outputs. At the end of the period,
technology diffusion and technology spillovers occur, leading each firm to attain a

I5This approach follows Jones (1975) and has recently been used to study the regional effects of
international trade by Kovak (2013) and Dix-Carneiro & Kovak (2015).



new technology level a;.r,+1. The static portion of the model is solved by starting at
Stage 3 and solving backwards.

Figure 1: Model timing

2.5 Production: Stage 3

At the beginning of stage three, the number of workers in a city, L., the number of
firms in a city-industry, n;, and the technology level available to each firm a;.; have

been determined. Given these, firms maximize profits by solving,

Lmﬂ)g}gi Rl_cﬂpitaic/'l'ﬁﬁ[‘lgqf‘i Rfiﬁ — WeiLicfi — Gedici — TieRicri
where w,, is the wage and r;, is the price of local resources. Since entrepreneurs
will employ all of the entrepreneurial effort available to them, E;., is not included in
this optimization problem. Using the first order conditions for this expression, gross
profits — which are the returns to entrepreneurial effort excluding fixed costs of entry
and R&D expenditures — are:

/ \—=1

Waﬂ atzrﬁ [ —— [ [
— ctlaci tict
Ticfr = —eaet id p]—a1—a2—ﬁal—a1—az—ﬁ(1 . al — o2 —,3) (5)
Ticft — al o2 it icft 1 2
af' oy’ P '

Local resource market clearing allows us to solve for the rental rate:

_ 1—aq —a> —
—= 11_a1 —5 =) / Walaa2 \ 1—a11—az 1 v Mot ——a—— \T(iii;_g
. e —al —a2 1-aj-a;
Fict = Ric pir 72 (6)
12 /=0



- 1-a1-a2-5 ©6)
P 1-ai —az ct _ct ptg_ a1-az acﬁg’l d’
Fict = Ric aalaaZBl_al_az £0
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2.6 Producers: Stage 2

At the beginning of stage two, workers and firms have already made their location
decisions and firms have access to an initial technology level a;.s,. Given these, firms
must choose how much to invest in R&D to increase their productivity in order to
maximize profits. In doing so, they take into account the production decisions that

we solved forabove.

When firms conduct R&D, they are choosing a technology multiplier ¢;.; = 0
that increases their initial technology level according to,

Aicft — (1 + goicft)(S aicft P (7)

at a cost w, C @, where C is a parameter that determines the labor cost of inno-

vation.!® We assume that § < 1 — a; — ay — B so that the firm’s profit function is
concave in the R&D investment level.

Firms choose the innovation investment that maximizes gross profits less R&D

expenses,
/ \—71
1 1 1-ai1-az2—B
° ngldc%zl’izgct (1— a1 —ar—B)— WeiC
—a1—an—B & 1—a2—B ai—az2—B a Q. —ar—ax—p)— t icft
wax (1 +m- ~Ni—ai—a>—g alcf nit a11a22 o —anp ctLQicft
mav (1l 4 rm. ~Nl—a1—a>—B8 al~a1—a2—B pl-ai—az2—

subject to ¢;.; = 0. For now, assume that there is an interior solution to this problem,
so that ¢, > 0. In this case, the first order conditions for the firm’s problem can

be used to obtain the following expression for the firm’s R&D decision, where the

resource rent is substituted out using Eq. 6:

16While we do not allow the R&D cost to vary by industry here, allowing an industry-specific cost
parameter would not fundamentally alter our results.
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' 1
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icft
a® g%z £=0 f
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1 2 f=0

Recalling that 1 — 6 — a; — ax — S > 0, this equation tells us that for an individual
firm the optimal level of innovation is increasing in the firm’s initial technology level

and the city-industry resource endowment. The level of innovation is decreasing in
the cost of R&D, the wage level, and the amount of competition the firm faces for
local resources, represented by the integral over the technology level of all other firms

in the city-industry.

Suppose for now that all firms in an industry start with the same initial tech-
nology level a;.r;. Later, we will see that this is the case given how the technology
diffusion process is modeled.!” In this case, firms in the industry will face the same
R&D optimization problem, which implies that they will all choose the same R&D
investment level, which we label ¢}.,. Firms will be aware of the R&D decisions made
by other firms and will take this into account when making their own decisions. The
R&D investment consistent with these expectations is found by substituting Eq. 7
into Eq. 8 and solving to obtain,

( /N = 1.1
(1 +(D* )= 0 e aicftRB /—ctz_ -1 1-a1 -az-5 ©
: c

piw='n~A
ic a;Z:L a2az {} ct ict

ict

This expression tells us that the level of innovation by a firm is increasing in
the firm’s initial technology level. At the same time it is decreasing in the number of
firms in the same city-industry, which implies more competition for fixed city-industry

resources.

7To keep things simple, and because firm heterogeneity is not central to the exercise undertaken in
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this paper, we have decided not to include within-industry firm heterogeneity in the model. However,
firm heterogeneity could potentially be incorporated in a more sophisticated version of the model.
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2.7 Producers: Stage1

Next, we consider the entry decisions of firms. Any worker can choose to become
an entrepreneur by paying a fixed cost (in terms of labor) of /. Because there is
a large supply of potential entrants, ex post profits will be driven to zero. Thus, in
equilibrium 7,y — weCoici = we,l” . Using this zero profit condition together with
Egs. 5, 6, and 9, we solve for the number of firms in a city-industry:

/ a, \=t / \1=a1-=a2-6 / \s
az1 Yy g1 B
i=w “ °
b2 l—a—oa—p—0 g n
B _ —ar—o—p— R, 10
ct a® ™ W8t F=—C C ( )

This, together with the first-order conditions from the firm’s problem in Stage 3,

gives city-industry employment:

/ a \—7; / 5 \%/ \uifiﬂ
a>-1T 1 — 1 1 _ _ _ _
Lict=aw ” qutz nf R. 26 a-a-p-0 (11)
B
ot a® g it ict C F-C

Together, Egs. 10 and 11 imply the following relationship between the number of
firms and the number of workers in a city-industry,

/ \
I - a(F = C) . (12)

ict ict

l—ay—ar—f—0

Eq. 12 shows that growth in city-industry employment is driven entirely by growth
in the number of firms. Eq. 10 can also be used, together with Eq. 9 to solve for the
equilibrium level of R&D in the industry:

oF _CO)
C(l—On—az—ﬂ—é)

1+ i) = (13)

This expression shows that firms’ R&D investments will depend only on model
parameters, a useful feature that simplifies the results. So far we have solved the

model assuming that g,.,* > 0. For this to hold, we need, F > C igd 18 For
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¥Note that the expression in parenthesis can be interpreted as the ratio of the gains from addi-
tional firms in an industry to the gains from improved technology in the industry. For industries
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the remainder of this theory we assume that this condition is satisfied so that we have
an interior solution to the firm’s R&D optimization problem and R&D occurs in all

industries.

2.8 Spillovers and technology diffusion

At the end of a period, after production and consumption have taken place, firms are
able to copy technology from other firms in the same industry (diffusion). However,
because all firms in a given city-industry end the period with the same technol-
ogy level, the role of diffusion is simply to rule out strategic behavior. In addition,
entrepreneurs may share ideas, and this recombination of ideas can increase their
productivity (spillovers). Following Glaeser et al. (1992), we write the growth rate in

technology at the city-industry level as,

/ N\
In =8+ (14)
Aict—1
where S;.,—1 = 1 represent the amount of spillovers available to a city-industry in a
period. This can include within-industry effects, cross-industry spillovers, as well as

national industry technology growth or city-level aggregate spillovers.

We can use Eq. 14 to translate the growth in (unobservable) city-industry tech-
nology into the growth of (observable) city-industry employment. Using Eq. 2, Eq.
7,Eq. 11, and Eq. 14, we obtain,

/1\ /1\ .
Aln(Liry = g Swt+ g Aln(pi)+ O’ZB_— Aln(Ve) (15)

/ \
y Ua _é —@2 A In(qet) +{ + Eict

where ('is a constant function of model parameters. Note that by differencing we

have eliminated the local resource endowment from this equation.

As a final step, we need to decide how to model the spillover term. Existing

empirical evidence provides little guidance here, so we will opt for a fairly simple

where the inequality above doesn’t hold, there will be no innovation.
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approach.!” We model the spillovers benefits to firms in industry i from R&D in
local firms in industry £ as a function of (1) the amount of new ideas produced in
industry k&, which is a function of the size of the technology advance made by each
firm (1 + ¢}.,), and the number of firms, 7., and (2) the usefulness of these ideas to
firms in industry i, given by parameter ;.. Thus, there is a matrix of 7;; parameters
representing the usefulness of an idea from industry £ to producers in industry i.
The diagonal 7; terms reflects within-industry spillovers.?’ Given this, we write the

spillover function as,?!

Sict = Tki In (nkct(l + ¢kct)) + é:it + Yet.
k

Using Eqs. 12 and 13, this can be rewritten as,

Sict = Tki 1n(cht) + é:it + Yet +I
k

where I is a constant term. Combining this with Eq. 15 we obtain,

/ N\ .
In(Lice) — ln(Lictfl) = 8 Tiln(Lic) +  Triln(Lger)
o
+  In(pi) — In(pit—1) +Eie | (16)
[V(az — 1) — az2] In(Qet) — In(Qct—1) + Wet

11

+ (a2 —1) In(v}) —In(v; ) +T +FEict

19In the empirical analysis we will investigate the robustness of our results to some reasonable
alternative formulations.

29The intuition behind the within-industry spillovers in this model is that, while all firms achieve
the same new technology level after undertaking R&D, this new level need not be achieved in exactly
the same way. As a result, it may be possible for firms to achieve further gains by observing the
different types of technologies developed by their competitors. However, the potential gains from
within-industry spillovers will depend on a number of factors, such as the willingness for firms in an
industry to share ideas with their direct local competitors.

2lHere we are assuming that city-industry resource endowments are such that nxgz 1. This
assumption allows us to express the spillover term in a slightly simpler way, but is not central to
our resplts. If we are worried that nkct can fall below one then we would instead write this as

Sict=  xTriln(max(Nied 1+ @rer), 0))+Eit+ Wer.
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where the constant terms have been gathered into I'. This equation expresses the
change in log employment in industry i and location ¢ in terms of (1) within-industry
spillovers generated by employment in industry i, (2) cross-industry spillovers, (3)
national industry-specific factors that affect industry i in all locations, (4) city-specific
factors that affect all industries in a location, and (5) aggregate changes in the outside

option of workers that affect all industries in all locations.

This expression for city-industry growth will motivate our empirical specifica-
tion.?? One feature that is worth noting here is that we have two factors, city-level
aggregate spillovers ., and city congestion costs g.;, both of which vary at the city-
year level. Empirically we will not be able to separate these positive and negative
effects and so we will only be able to identify their net impact. Similarly, we cannot
separate positive and negative effects that vary at the industry-year level.

Note that in the absence of spillovers, and with common technologies across loca-
tions, the city size distribution in this model will be determined by the distribution of
local resource endowments. Once local technology spillovers are added, city sizes will
be determined by a combination of the initial resource endowment and the evolving
technology levels. This hybrid of locational fundamentals and increasing returns is
consistent with some existing empirical results (e.g., Davis & Weinstein (2002) and
Bleakley & Lin (2012)). Once spillovers are included, the dynamics of the system are
complex and depend crucially on the matrix of 7;; parameters.”® Estimating these

parameters is the goal of our empirical exercise, which we turn to next.

22There are at least two promising alternative theories that may yield an empirical specification
similar to the expression generated by our model. One such theory could combine static inter-
industry connections, such as pecuniary spillovers through intermediate-goods sales, with changing
transport costs. A second alternative combines static agglomeration forces with a friction that
results in a slow transition towards a static equilibrium. Our empirical exercises cannot make a
sharp distinction between the mechanisms described in our framework and these alternatives, so
they should not be interpreted as a direct test of the particular agglomeration mechanism described
by the theory.

2In addition, the dynamics are likely to depend crucially on city-size congestion forces, which
are not fully modeled here. Because the primary goals of this paper are empirical, we leave a full
exploration of these dynamics for future work.
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3 Data

The main database used in this study was constructed from thousands of pages of
original British Census of Population summary reports. The decennial Census data
were collected by trained registrars during a relatively short time period, usually a
few days in April of each census year. As part of the census, individuals were asked
to state their occupation, but the reported occupations correspond more closely to
industries than to what we think of as occupations today.>* A unique feature of this
database is that the information is drawn from a full census. Virtually every person in
the cities we study provided information on their occupation and all of these answers

are reflected in the employment counts in our data.?’

The database includes 31 cities for which occupation data were reported in each
year from 1851-1911, containing 28-34% of the English population over the period
we study. The geographic extent of these cities changes over time as the cities grow,
a feature that we view as desirable for the purposes of our study.?® Appendix A.2
provides a list of the cities included in the database, as well as a map showing the
location of these cities in England. In general, our analysis industries cover the
majority of the working population of the cities, with most of the remainder employed

by the government or in agriculture.

The industries in the database span manufacturing, food processing, services and
professionals, retail, transportation, construction, mining, and utilities. Because the
occupational categories listed in the census reports varied over time, we combined

multiple industries in order to construct consistent industry groupings over the study

24Examples from 1851 include “Banker”, “Glass Manufacture” or “Cotton manufacture”. The
database does include a few occupations that do not directly correspond to industries, such as
“Labourer”, “Mechanic™, or “Gentleman”, but these are a relatively small share of the population.
These categories are not included in the analysis. In 1921 the Census office renamed what had
previously been called “occupation” to be “industry” and then introduced a new set of data reflecting
occupation in the modern sense.

2This contrasts with data based on census samples, which often covers 5% or 1% of the available
data. We have experimented with data based on a census sample (from the U.S.) and found that,
when cutting the data to the city-industry level, sampling error has a substantial effect on the
consistency and robustness of the results.

260ther studies in the same vein, such as Michaels et al. (2013), also use metropolitan boundaries
that expand over time. The alternative is working with fixed geographic units. While that may
be preferred for some types of work, given the growth that characterizes most of the cities in our
sample, using fixed geographic units would mean either that the early observations would include a
substantial portion of rural land surrounding the city, or that a substantial portion of city growth
would not be part of our sample in the later years. Either of these options is undesirable.
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period. This process generates 26 consistent private sector occupation categories.?’

Of these, 23 can be matched to the connections matrices used in the analysis. Table

7 in Appendix A.2 describes the industries included in the database.

A preliminary analysis, using the agglomeration measure from Ellison & Glaeser
(1997), suggests that the agglomeration patterns observed in our data are similar to
those documented in modern studies (details in Appendix A.2, Tables 8-9). Britain’s
main manufacturing and export industries, such as Textiles, Metal & Machines, and
Shipbuilding, show high levels of geographic agglomeration. Many non-traded ser-
vices or retail industries, including Merchants, Agents, Etc., Construction, and Shop-
keepers, Salesmen, Etc. show low levels of agglomeration. Overall, the median level
of industry agglomeration is between 0.02 and 0.027, which is comparable to the
levels reported for the modern U.S. economy by Ellison & Glaeser (1997) and some-
what larger than the levels reported for the modern British economy by Faggio et al.
(2013).%8

This study also requires a set of matrices measuring the pattern of connections
between industries. These measures should reflect the channels through which ideas
may flow between industries. Existing literature provides some guidance here. Mar-
shall (1890) suggested that firms may benefit from connections operating through
input-output flows, the sharing of labor pools, or other types of technology spillovers.
The use of input-output connections is supported by recent literature showing that
firms share information with their customers or suppliers.”’ To reflect this chan-
nel, we use an input-output table constructed by Thomas (1987) based on the 1907

British Census of Production (Britain’s first industrial census).’® We construct two

2"Individual categories in the years were combined into industry groups based on (1) the census’
occupation classes, and (2) the name of the occupation. Further details of this procedure are available
in the Online Appendix.

28Using industry data for 459 manufacturing industries at the four-digit level and 50 states, Ellison
& Glaeser (1997) calculate a mean agglomeration index of 0.051 and a median of 0.026. For Britain,
Faggio et al. (2013) calculate industry agglomeration using 94 3-digit manufacturing industries and
84 urban travel-to-work areas. They obtain a mean agglomeration index of 0.027 and a median of
0.009. Kim (1995) calculates an alternative measure of agglomeration for the U.S. during the late
19th and early 20th centuries, but given that he studies only manufacturing industries, and given
the substantial differences between his industry definitions and our own, it is difficult to directly
compare to his results.

2For example, Javorcik (2004) and Kugler (2006) provide evidence that the presence of foreign
firms (FDI) affects the productivity of upstream and downstream domestic firms.

30For robustness exercises, we have also collected an input-output table for 1841 constructed by
Horrell et al. (1994) with 12 more aggregated industry categories. See Appendix A.2 for more details.
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variables: /Oin;; , which gives the share of industry i’s intermediate inputs that are
sourced from industry j, and /Oout; which gives the share of industry i’s sales of
intermediate goods that are purchased by industry j. One drawback of using these
matrices is that they are for intermediate goods; they will not capture the pattern of
capital goods flows.

Another channel for knowledge flow is the movement of workers, who may carry
ideas between industries.?' To reflect this channel, we construct two different mea-
sures of the similarity of the workforces used by different industries. The first measure
is based on the demographic characteristics of workers (their age and gender) from the
1851 Census. These features had an important influence on the types of jobs a worker
could hold during the period we study.*?> For any two industries, our demographic-
based measure of labor force similarity, EMP;;, is constructed by dividing workers in
each industry into these four available bins (male/female and over20/under20) and
calculating the correlation in shares across the industries. A second measure of labor-
force similarity, based on the occupations found in each industry, is more similar to
the measures used in previous studies. This measure is built using U.S. census data
from 1880, which reports the occupational breakdown of employment by industry.
We map the U.S. industry categories to the categories available in our analysis data.
Then, for any two industries our occupation-based measure of labor force similarity,

OCCj is the correlation in the vector of employment shares for each occupation.

4 Empirical approach

The starting point for our analysis is based on Equation 16, which represents the
growth rate of a city-industry as a function of within and cross-industry agglomera-
tion effects as well as time-varying city-specific and national industry-specific factors.

Rewriting this as a regression equation we have,

6 In(Lict+1) = TisIn(Lict) + Tt In(Lxct) + Oct + Xit + €ict (17)
k i

3IResearch by Poole (2013) and Balsvik (2011), using data from Brazil and Norway, respectively,
has highlighted this channel of knowledge flow.

32For example, textile industries employed substantial amounts of female and child labor, while
metal and heavy machinery industry jobs were almost exclusively reserved for adult males.
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where 6 is the first difference operator, 7;; and 7;; include 1/, 0., is a full set of
city-year effects and y;; is a full set of industry-year effects. The first term on the
right hand side represents within-industry spillovers, while the second term represents

cross-industry spillovers.>

One issue with Equation 17 is that there are too many parameters for us to credibly
estimate given the available data. In order to reduce the number of parameters, we
need to put additional structure on the spillover terms. As discussed in the previous
section, we follow recent literature in this area, particularly Ellison et al. (2010), by
parameterizing the connections between industries using the available input-output

and labor force similarity matrices:

Tri = B110inki + B2/ Ooutii + B3EMPri +B40CCri Vi, k

Substituting this into 17 we obtain:

6 In(Licts1) = Tuln(Lic)+B1  10inkiin(Licd) + B2 100Utk In(Lkee)
k/ k/

-+ B3 EMPkiln(cht)+B4 OCCkiln(cht)+ect+Xit+eict (18)
ki k i

Instead of a large number of parameters measuring spillovers across industries, Equa-
tion 18 now contains only four parameters multiplying four (weighted) summations
of log employment. Summary statistics for the cross-industry spillover terms are

available in Appendix Table 10.

There is a clear parallel between the specification in Equation 18 and the empirical
approach used in the convergence literature (Barro & Sala-i Martin (1992)). A central
debate in this literature has revolved around the inclusion of fixed effects for the
cross-sectional units (see, e.g., Caselli et al. (1996)). In our context, the inclusion of

such characteristics could help control for location and industry-specific factors that

33We purposely omitted the last term of Equation 16, Aln(V}), because although it could be
estimated as a year-specific constant, it would be collinear with both the (summation of) industry-
year and city-year effects. Moreover, in any given year we also need to drop one of the city or
industry dummies in order to avoid collinearity. In all specifications we chose to drop the industry-
year dummies associated with the “General services” sector.
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affect the growth rate of industry and are correlated with initial employment levels.
However, the inclusion of city-industry fixed effects in Equation 18 will introduce a
mechanical bias in our estimated coefficients (Hurwicz (1950), Nickell (1981)). This
bias is a particular concern in a setting where the time-series is limited. Solutions to
these issues have been offered by Arellano & Bond (1991), Blundell & Bond (1998),
and others, yet these procedures can also generate biased results, as shown by Hauk Jr.
& Wacziarg (2009). In a recent review, Barro (2012) uses data covering 40-plus years
and argues (p. 20) that in this setting, ‘“the most reliable estimates of convergence
rates come from systems that exclude country fixed effects but include an array of X
variables to mitigate the consequence of omitted variables.” Our approach essentially
follows this advice, but with the additional advantage that we have two cross-sectional
dimensions, which allows for the inclusion of flexible controls in the form of time-

varying city and industry effects.

There are two issues to address at this point. First, there could be measurement
error in L;,. Since this variable appears both on the left and right hand side, this
would mechanically generate an attenuation bias in our within-industry spillover es-
timates. Moreover, since L;.is correlated with the other explanatory variables, such
measurement error would also bias the remaining estimates. We deal with measure-
ment error in L;,on the right hand side by instrumenting it with lagged city-industry
employment.®* Under the assumption that the measurement error in any given city-
industry pair is iid across cities and time, our instrument is L{fit =Lict—1 X Qi—en
where L;,— is the lag of L;, and g;—, is the decennial growth rate in industry i
computed using employment levels in all cities except city ¢, as in Bartik (1991).

Second, we are also concerned that there may be omitted variables that affect both
the level of employment in industry j and the growth in employment in industry i.
Such variables could potentially bias our estimated coefficients on both the cross-
industry and (when j = i) the within-industry spillovers. For instance, if there
is some factor not included in our model which causes growth in two industries i
and & /= i in the same city, a naive estimation would impute such growth to b
spillover effect from k to i, thus biasing the estimated spillover upward. Our lagged
instrumentation approach can also help us deal with these concerns. Specifically,
when using instruments with a one-decade lag to address endogeneity concerns the

34This approach is somewhat similar to the approach introduced by Bartik (1991) and has been
suggested by Combes et al. (2011).
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exclusion restriction is that there is not some omitted variable that is correlated
with employment in some industry & in period ¢ and affects employment growth in
industry i from period ¢ + 1 to ¢ + 2. Moreover, the omitted variable cannot affect
growth in all industries in a location, else it would be captured by the city-year fixed
effect, nor can it affect the growth rate of industry i in all cities.?>> Thus, while our
approach does not allow us to rule out all possible confounding factors, it allows us
to narrow the set of potential confounding forces relative to most previous work in
this area. Now, for the cross-industry case, the summation terms in Equation 18 such
as ) =i 10in;; In(Ly,) are instrumented with * ; _; IO0iny; In(L™5Y), where L™ is

computed as described above.

The estimation is performed using OLS or, when using instruments, two-stage
least squares. Correlated errors are a concern in these regressions. Specifically, we
are concerned about serial correlation, which Bertrand et al. (2004) argue can be a
serious concern in panel data regressions, though this is perhaps less of a concern for
us given the relatively small time dimension in our data. A second concern is that
industries within the same city are likely to have correlated errors. A third concern,
highlighted by Conley (1999) and more recently by Barrios et al. (2012), is spatial
correlation occurring across cities. Here the greatest concern is that error terms may
be correlated within the same industry across cities (though the results presented in
Appendix A.4.5 suggest that cross-city effects are modest).

To deal with all of these concerns we use multi-dimensional clustered standard
errors following work by Cameron et al. (2011) and Thompson (2011). We cluster by
(1) city-industry, which allows for serial correlation; (2) city-year, which allows for
correlated errors across industries in the same city and year; and (3) industry-year,
which allows for spatial correlation across cities within the same industry and year.
This method relies on asymptotic results based on the dimension with the fewest
number of clusters.  In our case this is 23 industries X 6 years = 138, which should
be large enough to avoid serious small-sample concerns.

In order to conduct underidentification and weak-instrument tests while cluster-

ing standard errors in multiple dimension, we produced a new statistical package
following the approach from Kleibergen & Paap (2006). This was necessary because
existing statistical packages are unable to calculate these tests correctly when cluster-

33The results are not sensitive to the length of the lag used in the instrumentation. We have
experimented with two- and three-decade lags and obtained essentially the same results.
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ing by more than two dimensions. The procedure used to generate our new statistical
package is described in Appendix A.3.2. Our package, which we plan to make pub-
licly available, can accommodate clustering across an arbitrary number of dimensions,

which is likely to be useful for future researchers.

Finally, we may be concerned about how well our estimation procedure performs
in a data set of the size available in this study. To assess this, we conduct a series of
Monte Carlo simulations in which we construct 1000 new data sets with a size and
error structure based on the true data, but with known spillover parameter values.
We then apply our estimation procedure to these simulated data in order to obtain
a distribution of placebo coefficient estimates, which can then be compared to the
estimates obtained using the true data. These simulations, which are described in
more detail in Appendix A.3.1, suggest that our estimation procedure performs well

in datasets with a size and error structure similar to the true data.

To simplify the exposition, we will hereafter collectively refer to the set of regres-
sors In(L;.,) for i = 1...1 as the within variables. Similarly, with a small abuse of
notation the term " ;_; IOiny; In(Ly.,) is referred to as IOin, and so on for IOout,
EMP , and OCC. We collectively refer to the latter terms as the between regressors

since they are the parametrized counterpart of the spillovers across industries.

5 Main results

Our main regression results are based on the specification described in Equation 18.
The estimation strategy involves using four measures for the pattern of cross-industry
spillovers: forward input-output linkages, backward input-output linkages, and two
measures of labor force similarity. We begin our analysis in Table 1 by looking
at results that include only one of these at a time. Columns 1-3 include only the
forward input-output linkages; Columns 1 presents OLS results; Column 2 presents
results with lagged instrumentation on the within terms; and Column 3 uses lagged
instrumentation for both the within and between terms. A similar pattern is used for
backward input-output linkages in Columns 4-6, the demographic-based labor force
similarity measure in Columns 7-9, and the occupation-based labor force similarity

measure in Columns 10-12. All of these results include a full set of industry-specific
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within-industry terms, but these are not reported in Table 1 for space reasons.>®

These results show strong positive effects operating through forward input-output
connections, suggesting that local suppliers play an important role in industry growth.
The importance of local suppliers to industry growth is perhaps the clearest and
most robust result emerging from our analysis. There is little evidence of positive
effects operating through local buyers. The results do provide some evidence that the
presence of other industries using similar labor pools may increase growth, particularly
when using the more detailed OCC measure. A comparison across columns for each
spillover measure shows that the IV results do not differ from the OLS results in
a statistically significant way, suggesting that any measurement error or omitted
variables concerns addressed by instruments are not generating substantial bias in
the OLS results.

Table 2 considers all four channels simultaneously. Columns 1-3 present results
in which we estimate a single coefficient on the within-industry terms. Columns 4-6
present results in which we estimate industry-specific within-industry effects. These
heterogeneous within-industry coefficients, which are not reported in Table 2, will
be explored later. Columns 1 and 4 presents OLS results. In Column 2 and 5 we
instrument the within terms. In Column 3 and 6 we use instruments for both the
within and between terms. The results are generally similar to those from Table
1; the presence of local suppliers or industries employing a similar labor force both
appear to enhance city-industry growth. The presence of local buyers has no positive
effect. In Columns 1-3, we can see that the within term is negative, suggesting that
on average across all industries employment growth is slower in locations where initial

industry employment is already large.

36We do not report first-stage results for our instrumental variables regressions because these
involve a very large number of first-stage regressions. Instead, for each specification we report the
test statistics for the Lagrange Multiplier underidentification test based on Kleibergen & Paap (2006)
as well as the test static for weak instruments test based on the Kleibergen-Paap Wald statistic. It is
clear from these statistics that weak instruments are not a substantial concern in these specifications.
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Table 1: OLS and IV regressions including only one spillover path at a time

@) (2) 3) “@ 4) (6)

10in 0.0581***  0.0440%**  (0.0417***
(0.0128) (0.0113) (0.0113)
I0out -0.0030 -0.0105  -0.0143
(0.0108) (0.0112) (0.0113)

Observations 4,263 3,549 3,549 4,263 3,549 3,549
Estimation ols 2sls 2sls ols 2sls 2sls
Instrumented none witn wtn-btn none wtn wtn-btn
KP under id. 29.27 32.40 23.18 23.37
KP weak id. 77.59 75.24 61.98 61.10

) (8) ) (10) (11) (12)
EMP 0.0009 0.0022* 0.0017

(0.0017) (0.0013) (0.0014)
ocCcC 0.0058**  0.0058*  0.0060*
(0.0029) (0.0032) (0.0032)

Observations 4,263 3,549 3,549 4,263 3,549 3,549
Estimation ols 2sls 2sls ols 2sls 2sls
Instrumented none witn wtn-btn none wtn wtn-btn
KP under id. 25.42 24.53 22.08 21.69
KP weak id. 70.37 64.49 56.4 45.65

Multi-level clustered standard errors by city-industry, city-year, and industry-year in paren-
thesis. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Heterogeneous within terms,
city-time and industry-time effects are included in all regressions but not displayed. 2SLS
regressions use lagged instruments. Note that the number of observations falls for the instru-
mentedregressions because the instruments require alagged employment term. Thus, data
from 1851 arenotavailable fortheseregressions. Acronyms: wtn=within,btn=between.
“KP under id.” denotes the test statistic for the Lagrange Multiplier underidentification
test based on Kleibergen & Paap (2006). “KP weak id.” denotes the test statistic for a
weak instruments testbased onthe Kleibergen-Paap Wald statistic.

Based on the results from Column 6 of Table 2, our preferred specification, a one
standard deviation increase (3.21) in the presence of local suppliers (the /Oin chan-
nel) increases city-industry growth by 20%. Turning to the occupational similarity
channel, OCC, a one standard deviation increase in the presence of occupationally-
similar local industries (25.70) leads to a 17% increase in city industry growth when
using the results from Column 6 of Table 2. Thus, both of these channels appear to

exert a substantial positive effect on city-industry growth.
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Table 2: Results with all cross-industry spillover channels

(1) (2) (3) (4) (5) (6)

I0in 0.0216***  0.0187*** 0.0161** 0.0758***  (0.0623***  (.0622%**

(0.0072) (0.0067) (0.0069)  (0.0170) (0.0158) (0.0159)
I0out 0.0043 0.0004 -0.0007 -0.0051 -0.0144 -0.0178

(0.0047) (0.0051) (0.0050)  (0.0095) (0.0105) (0.0109)
EMP 0.0002 0.0001 -0.0001 0.0001 0.0020* 0.0016

(0.0005) (0.0005) (0.0005)  (0.0016) (0.0012) (0.0014)
ocCcC 0.0020 0.0013 0.0012  0.0087***  0.0070**  0.0068**

(0.0013) (0.0013) (0.0013)  (0.0029) (0.0032) (0.0032)
Within -0.0316***  -0.0225*  -0.0211*

(0.0114) (0.0122) (0.0124)
Observations 4,263 3,554 3,549 4,263 3,549 3,549
Estimation ols 2sls 2sls ols 2sls 2sls
Instrumented none wtn wtn-btn none wtn wtn-btn
Within terms homog homog homog heter heter heter
KP under id. 22.79 23.99 28.05 29.87
KP weak id. 5508.28 1082.03 76.09 50.72

Multi-Tevel clustered standard errors by city-industry, city-year, and industry-year in parenthesis.
Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Heterogeneous regressors wWithin are included
in Columns 4-6 but not displayed. City-time and industry-time effects are included in all regressions
but not displayed. 2SLS regressions use lagged instruments. Note that the number of observations
falls for the instrumented regressions because the instruments require a lagged employment term.
Thus, data from 1851 are not available for these regressions. Acronyms: wtn = within, btn =
between. “KP under id.” denotes the test statistic for the Lagrange Multiplier underidentification
test based on Kleibergen & Paap (2006). “KP weak id.” denotes the test statistic for a weak
instruments test based on the Kleibergen-Paap Wald statistic.

Our analysis can also help us understand the strength of within-industry spillovers,
reflected in the In(L;,) term in Equation 17.3” When analyzing these results, it is
important to keep in mind that they reflect the net effect of within-industry agglom-
eration forces, which may be generated through a balance between agglomeration
forces and negative forces such as competition or mean-reversion due to the diffusion
of technologies across cities. We cannot identify the strength of local within-industry
agglomeration forces independent of counteracting forces. However, it is the net
strength of these forces, which we are able to estimate, that is relevant for under-
standing the contribution of within-industry agglomeration forces to city growth.

We have already seen, in Table 2 Columns 1-3, that the average within-industry

effect across all industries is negative. These results are consistent with negative

37In a static context these are often referred to as localization economies.
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dynamic within-industry effects, perhaps linked to the unwillingness of firms to share
new ideas with their direct competitors. However, the fact that our results change
substantially once we allow for heterogeneous within-industry effects, as in Columns 4-
6 of Table 2, suggests that these are likely to vary substantially across industries. We
explore these heterogeneous within-industry effects in Figure 2, which presents
coefficients and 95% confidence intervals for industry-specific within-industry spillover

coefficients from regressions corresponding to Column 6 of  Table 2.

Figure 2: Strength of within-industry effects by industry

Results correspond to the regression described in Column 6 of Table 2. This figure displays coefficient
estimates and 95% confidence intervals based on standard errors clustered by city-industry, city-year,
and industry-year. The regression includes a full set of city-year and industry-year effects as well as

between terms. Both the within and between terms are instrumented using one-decade lags.

In only one industry, shipbuilding, do we observe any evidence of positive within-
industry effects. This industry was characterized by increasing returns and strong
patterns of geographic concentration. All other industries exhibit slower growth in
locations where initial industry employment was large, after controlling for other
forces. Within-industry agglomeration benefits, it would appear, are more the excep-
tion than the rule.

The results presented so far describe coefficients generated using all industries,

where each industry is given equal weight. We may be concerned that these results
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are being driven primarily by smaller industries or smaller cities. To check this,
we have also calculate weighted regressions, where the set of observations for each
city-industry is weighted based on employment in that city-industry in 1851.3% Note
that this puts a lot of weight on the effects observed in a few very large cities. The
results are presented in Table 3. These weighted regressions continue to highlight the
important role played by local suppliers. Thus, this result is not driven by smaller
industries or cities. However, we no longer observe positive results associated with
the occupational similarity measure. This suggests that the positive impact of local
industries employing similar workers observed in Table 2 is being driven by smaller

industries or smaller cities, an interesting result in itself.

Table 3: Weighted regression results with all cross-industry spillover channels

(1) (2) (3) 4) (5) (6)

10in 0.0161 0.0224**  0.0259***  0.0299**  0.0314***  (0.0361***

(0.0105)  (0.0096)  (0.0100) (0.0137)  (0.0120) (0.0126)
I0out -0.0039 -0.0082 -0.0086 -0.0038 -0.0111 -0.0110

(0.0057)  (0.0065)  (0.0065) (0.0130)  (0.0138) (0.0143)
EMP 0.0003 0.0002 0.0003 0.0002 0.0008 0.0007

(0.0003)  (0.0003)  (0.0003) (0.0009)  (0.0008) (0.0009)
ocCcC -0.0007 -0.0006 -0.0002 -0.0023 -0.0023 -0.0015

(0.0015) (0.0015)  (0.0015) (0.0028)  (0.0029) (0.0028)
Within -0.0127 -0.0120 -0.0122

(0.0111) (0.0116)  (0.0115)

Observations 4,253 3,544 3,541 4,253 3,541 3,541
Estimation ols 2sls 2sls ols 2sls 2sls
Instrumented none win wtn-btn none win witn-btn
wtn homog homog homog heter heter heter
KP under id. 23 24.21 28.03 29.82
KP weak id. 5261.37 1026.95 75.83 50.28

Multi-Tevel clustered standard errors by city-industry, city-year, and industry-year in parenthesis.
Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Heterogeneous regressors within are included
in Columns 4-6 but not displayed. City-year and industry-year effects are included in all regressions
but not displayed. 2SLS regressions use lagged instruments. Note that the number of observations
falls for the instrumented regressions in columns 3-6 because the instruments require a lagged
employment term. Thus, data from 1851 are not available for these regressions. Acronyms: wtn
= within, btn = between. “KP under id.” denotes the test statistic for the Lagrange Multiplier
underidentification test based on Kleibergen & Paap (2006). “KP weak id.” denotes the test
statistic for a weak instruments test based on the Kleibergen-Paap Wald statistic. Weights for
each city-industry observation are based on employment in the city-industry in 1851.

38Specifically, this is done by weighting the importance of each city-industry observation based on
the number of workers itrepresented in 1851. Webase the weights for all years on initial city-industry
employment to avoid the potential for endogeneity in the city-industry weights.
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We have also investigated the robustness of our results to dropping individual
industries or individual cities from the analysis database (see Appendix A.4.1). These
exercises show that the significance of the estimates on the /Oin and OCC channels
are robust to dropping any city or any industry. However, the estimated coefficient
and confidence levels for the /Oout coefficient is sensitive to the exclusion of particular
industries. Specifically, when shipbuilding is excluded we observe that the /Oout

t.3° This suggests that

coefficient becomes positive but not statistically significan
in general the presence of local buyers may have a mild positive effect on industry

growth.

In addition, we have explored the sensitivity of our results to using alternative
functional forms to represent the relationship between spillovers and technological
progress. In Appendix A.4.3 we present results using alternative concave functional
relationships such as a square root or fifth root. Our findings are not sensitive to

these alternatives.

We have also explored the robustness of our results to the use of alternative
connections matrices. In particular, in Appendix A.4.4 we present results obtained
while using the less detailed input-output table constructed by Horrell et al. (1994),
which covers 12 more aggregated industry categories in 1841. This alternative input-

output matrix delivers similar results to those shown in our main regression tables.

The results discussed so far reveal average patterns across all industries. An ad-
ditional advantage of our empirical approach is that it is also possible to estimate
industry-specific coefficients in order to look for (1) heterogeneity in the industries
that benefit from each type of inter-industry connection or (2) heterogeneity in the

industries that produce each type of inter-industry connections. In Appendix A.4.2,
we estimate industry-specific coefficients for both spillover-benefiting and spillover-
producing industries and then compare them to a set of available industry character-
istics such as firm size, export and final goods sales shares, and labor or intermediate
cost shares. With only 23 estimated industry coefficients we cannot draw strong
conclusions from these relationships. However, our results do suggest several inter-
esting patterns. The only clear result is that industries that benefit from or produce
spillovers through the OCC channel tend to have a higher labor cost to sales ratio, a

finding that seems very reasonable. We also observe a consistent negative relationship

39Shipbuilding stands out relative to the other industries because it is particularly reliant on local
geography.
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between firm size and all types of inter-industry connections. While this relationship
is not statistically significant, it is consistent across all spillover types and it fits
well with previous work highlighting the importance of inter-industry connections for
smaller firms (e.g., Chinitz (1961)).

We can also look at how the estimated industry-specific within-industry coeffi-
cients are related to industry characteristics. This is done in Appendix A.4.2. With
such a small number of industry coefficients we cannot draw strong conclusions from
these results. However, we do observe some evidence that within-industry connec-
tions are more important in industries with larger firm sizes, which contrasts with the
consistent negative relationship that we observe between firm size and cross-industry

spillovers.

While the analysis described above focuses on spillovers occurring within-cities,
we have also explored the possibility that there may be important cross-city effects.
To explore cross-city effects, we have run additional regressions including variables
measuring market size as well as cross-industry spillovers occurring across cities. Our
results, reported in Appendix A.4.5, suggest that cross-city effects are much weaker
than within-city forces. This makes sense given that we think that the shape of cities
reflects the rapidly decaying strength of local agglomeration forces. We also find that
accounting for cross-city effects has little impact on our estimates of the strength of

within-city agglomeration forces.

6 Strength of the agglomeration forces

In this section we examine the relationship between city size and city-industry growth
and show how our city-year effects can be used to construct a summary measure of
the aggregate strength of the many cross-industry agglomeration forces present in
our model. In standard urban models, the impact of agglomeration forces is balanced
by congestion forces related to city size, operating through channels such as higher
housing prices or greater commute times. In our model, we have been largely agnostic
about the form of the congestion forces, which will be captured primarily by the city-
time effects. Thus, examining these estimated city-time coefficients offers an

opportunity for assessing the net impact of dynamic congestion or agglomeration force
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related to overall city size.** Also, the difference between these estimated city-time
effects and actual city growth rates must be due to the impact of the agglomeration
forces in the estimation equation. As a result, comparing the estimated city-time
effects to actual city growth rates allows us to quantify the combined strength of the

many cross-industry agglomeration forces captured by our measures.

To make this comparison more concrete, consider the graphs in Figure 3. The
dark blue diamond symbols in each graph describe, for each decade starting in 1861,
the relationship between the actual growth rate of city working population and the
log of city population at the beginning of the decade. The slopes of the fitted lines
for these series fluctuate close to zero, suggesting that on average Gibrat’s Law holds

for the cities in our data.

We want to compare the relationship between city size and city growth in the
actual data, as shown by the dark blue diamonds in Figure 3, to the relationship
between these variables obtained while controlling for within and cross-industry ag-
glomeration forces. This can be done using the estimated city-time effects represented
by 6. in Eq. 18. The red squares in Figure 3 describe the relationship between the
estimated city-year coefficients for each decade, 6., and the log of city population
at the beginning of each decade. In essence, these are showing us the relationship
between city size and city growth after controlling for national industry growth trends
and the agglomeration forces included in our model. We can draw two lessons from
these graphs. First, in all years the fitted lines based on the 6., terms slope downward
more steeply than the fitted lines for actual city growth. This suggests that, once we
control for cross-industry agglomeration forces, city size is negatively related to city
growth, consistent with the idea that there are dynamic city-size congestion forces.
Second, the difference between the slopes of the two fitted lines can be interpreted as
the aggregate effect of the various agglomeration forces in our model averaged across
cities. Put simply, if we can add up the strength of the convergence force in any
period and compare it to the actual pattern of city growth, then the difference must
be equal to the strength of the agglomeration forces. Third, the patterns described
in Figure 3 appear to be close to linear in logs, suggesting that these forces do not
differ dramatically across different city sizes.

The strength of these effects can be quantified in terms of the implied convergence

40These results will reflect only the net impact of city size, including both congestion and agglom-
eration forces.
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rate following the approach of Barro & Sala-i Martin (1992). To do so, we run the

following regressions:

O..= ap+ a; In(WORKpop..) + f.s (19)

GrowthWORKpop .=bo+ by In(WORKpop,)+ fes (20)

where ., is the estimated city-time effect forthe decade from¢tos+1, WORKpop ..,
is the working population of the city in year ¢, and GrowthWORKpop., is the actual
growth rate of the city from 7 to 7+ 1. These regressions are run separately for each
decade from 1861 to 1911. Convergence rates can be calculated using the estimated

a; and b, coefficients.

The results are presented in the top panel of Table 4. The two left-hand columns
describe the results from Equation 19 and the annualized city-size divergence rate
implied by these estimates. The next two columns describe similar results based on
Equation 20. The difference between these two city-size divergence rates, given in
the right-hand column, describes the aggregate strength of the agglomeration force
reflected in the cross-industry terms. These results suggest that the strength of city
agglomeration forces, in terms of the implied divergence rate, was 7.5-8.9% per decade.
In the bottom panel of Table 4 we calculate similar results except that the 6., terms
are obtained using regressions in which each observation is weighted based on the
employment in each city-industry in 1851. These results suggest a weaker agglomera-
tion force, equal to an implied divergence rate of 1.0-2.3% per decade. The difference
between these two results suggests that the agglomeration forces we capture may have

played a more important role for small industries.
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Figure 3: City size and city growth

Solid lines: Fitted lines comparing actual city growth over a decade to the log of city size at the
beginning of the decade. Dotted lines: Fitted lines comparing estimated coefficients from city-
time effects for each decade to the log of city size at the beginning of the decade. Blue diamonds:
Plot the actual city growth over a decade against the log of city population at the beginning of
the decade. Red squares: Plot the estimated city-time coefficients over the same decade (the B¢
terms estimated using Eq. 18) against the log of city population at the beginning of the decade.
The bottom right-hand panel compares the log of city population in 1851 to the average of city

growth rates over the entire 1861-1911 period and the average of city-time fixed effects across the
entire 1861-1911 period.
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Table 4: Measuring the aggregate strength of the agglomeration forces

Column 1 presents the a; coefficients from estimating Equation 19 for each decade (cross-sectional
regressions). Column 2 presents the decadal convergence rates implied by these coefficients. Column
3 presents the b; coefficients from estimating Equation 20 and Column 4 presents the decadal diver-
gence rates implied by these coefficients. Column 5 gives the aggregate strength of the divergence
force due to the agglomeration economies, which is equal to the difference between the decadal di-
vergence coefficients in Columns 2 and 4. The results in the top panel are based on city-time effects
estimated from unweighted regressions while the results in the bottom panel are based on city-time
effects estimated using weighted regressions based on city-industry employment in  1851.

There are some caveats to keep in mind when assessing these results. First, there
are likely to be agglomeration forces not captured by our estimation. These omitted
agglomeration forces may be partially reflected in the city-year fixed effects, which
would lead us to understate the strength of the agglomeration forces. Second, some
congestion forces may also be captured by our cross-industry terms. Similarly, there
may be some agglomeration forces captured by the within-industry terms, which
will also not be reflected in our results. Thus, the strength of the cross-industry
agglomeration force measured here is likely to be a lower bound.

We may be concerned that the results described in Table 4 are driven in part by the
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inclusion of industry-time effects in the regressions used to obtain the 6., terms. We
explore this possibility in Appendix A.4.6 by comparing the relationship between our
estimated 6., terms and city-time effects estimated while controlling for industry-year
effects. Since the only difference between these specifications is the presence of the
within and cross-industry agglomeration forces, we can be sure that these are driving
any differential results. Estimates obtained using this method are very similar, but
slightly larger, than those described in Table 4.

We can use a similar exercise to estimate the aggregate strength of the convergence

force due to within-industry effects. We begin by estimating,

6 In(Lice+1) = TiIn(Lict) + O FTHIN 4yt + 0t 1)

Il

Next, we use the values of QIW THIN  to estimate,

OVITHIN = g+ dy In(WORKpop )+ f. (22)

We then calculate the convergence force associated with the within-industry terms
using the same approach that we used previously. Table 5 describes the results.
The negative measured divergence force in this table highlights that within-industry
effects, on net, act as a convergence force. The strength of this force is sensitive
to whether the regressions are weighted, which suggests that the negative within-

industry employment effects tend to be stronger for smaller industries.
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Table 5: Measuring the aggregate strength of the convergence force associated with
the within-industry effects

Column 1 presents the d; coefficients from estimating Equation 22 for each decade (cross-sectional
regressions). Column 2 presents the decadal divergence rates implied by these coefficients. Column
3 presents the b; coefficients from estimating Equation 20 and Column 4 presents the decadal diver-
gence rates implied by these coefficients. Column 5 gives the aggregate strength of the divergence
force due to the agglomeration economies, which is equal to the difference between the decadal con-
vergence coefficients. The negative values in Column 5 indicate that within-industry effects are, on
net, a source of convergence across cities. The results in the top panel are based on city-time effects
estimated from unweighted regressions while the results in the bottom panel are based on city-time
effects estimated using weighted regressions based on city-industry employment in  1851.

~ Conclusion

In the introduction, we posed a number of questions about the nature of localized
agglomeration forces. The main contribution of this study is to provide a theoretically
grounded empirical approach that can be used to address these questions and the
detailed city-industry panel data needed to implement it.

We can now provide some answers for the particular empirical setting that we
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study. First, we find evidence that cross-industry agglomeration economies were more
important than within-industry agglomeration forces for generating city employment
growth. Within-industry effects are, on net, generally negative. This suggests that
local clusters of firms working in the same industry, which have attracted substantial
attention, are unlikely to deliver dynamic benefits. Second, our results suggest that
industries grow more rapidly when they co-locate with their suppliers or with other
industries that use occupationally-similar workforces. This result is in line with ar-
guments made by Jacobs (1969), as well as recent empirical findings. We document
a clear negative relationship between city size and city growth that appears once
we account for agglomeration forces related to a city’s industrial composition. This
suggests that Gibrat’s law is generated by a balance between agglomeration and dis-
persion forces. A lower bound estimate of the overall strength of the agglomeration
forces captured by our approach, in terms of the implied annual divergence rate in
city size, is around 1.0-2.3% per decade, though we find evidence that the effect on

smaller industries and smaller cities is likely to be substantially larger.

One of the most striking features of our results is how similar they look to some
of the existing findings in the literature, most of which are based on modern U.S. or
European data. In particular, the ordering of importance for the different spillover
channels — with input-output paths showing the strongest effects, followed by occupa-
tional similarity — looks very similar to the ordering obtained by Ellison et al. (2010).
This provides suggestive evidence that there may be substantial persistence in the
importance of these agglomeration economies over time and across space. Under-
standing how the patterns of within-industry and inter-industry connections evolve

over time is one avenue for future research.

The techniques introduced in this paper can be applied in any setting where
sufficiently rich long-run city-industry panel data can be constructed. Recent work
has made progress in constructing data of this type for the U.S. in both the modern
and historical period. Applying our approach to these emerging data sets is another

promising avenue for future work.
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A Appendix

A.1 Theoryappendix

This appendix explores several additional factors that are not included in the model
provided in the main text. We begin by discussing the implications of allowing vari-
ation in the costs of innovation or firm entry across industries. Next, we consider
allowing production function parameters to vary across industries. We then look at
incorporating capital into the model. Finally, we consider the implications of includ-
ing intermediate goods and the closely related issue of incorporating trade costs into
the model.

Variation in Industry Innovation or Entry Cost Parameters

Suppose that the innovation costs or entry costs are allowed to vary by industry,
so that we have F;and C;. This will affect the rate of firm entry and R&D, which will
affect the size of city-industry employment. However, as long as these cost parameters
are fixed over time and both denominated in the same units (labor), they will be
differenced out when we obtain the main regression specification. Thus, our empirical
approach will be robust to this modification. Note that holding these parameters fixed
over time does not imply that the costs of entry or innovation is fixed over time, since
that cost will also depend on the wage, which will vary over time and across locations.
However, it does imply that the relative cost of entry and R&D is constant over time

and across locations, even if it varies across industries.

Variation in Industry Production Function Parameters

Suppose that we allow the production function parameters to vary by industry,
so that they are now all indexed by i. In this case, the coefficient on the spillover
term from industry k& to industry i, which in our baseline model is 7;/f is now given
by w/f:. What this tells us is that the way in which employment in industry % is
translated into employment growth in industry i will now depend on the importance
of local industry-specific resources in the production function. This is because local
resources are the factors that tie industries to particular locations. Industries in which
local resources are relatively unimportant (low /) should exhibit large estimated
spillover coefficients because employment will be more able to respond to changing
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technology levels by shifting across locations.

When we estimate single cross-industry spillover terms we will be estimating the
average impact across industries with potentially varying f parameters. It is also
possible to estimate industry-specific spillover benefit terms in our framework, which

is done in Appendix A.4.2.

Incorporating Capital

Suppose that we incorporate capital as an input into production, so that the

production function is,

_ l1—oa1—o02—p
Yicft — aiqﬁL";LﬁH;’é}i b RﬁfiEicf? e

If there is a national capital market then this implies a national price of capital,

which we denote ;. In this case, introducing capital into the model would simply

add an additional time-varying national factor to the estimating equation. This will

be absorbed by the fixed effects and would not affect our results.

Alternatively, it may be the case that capital markets are more local. In this case,
the price of capital will be ... When industries share a common set of production
function parameters this will affect all industries in a similar way. As a result, it will

be absorbed into the city-time effects and will not impact our results.

However, if we also allow industries to be more or less capital intensive, then
variation in the local price of capital may have heterogeneous effects on city-industry
growth. Under these circumstances, the source of capital will become important. If
capital is related to city size, for example because capital availability depends on
total local savings which scales with city size, then this will introduce an industry-
specific city size effect. It is possible to incorporate industry-specific city size effects
into our regression framework. We have experimented with doing so and it does not
substantially alter our results. In order for capital to be one channel behind our within
and cross-industry spillover estimates, we need three things to be true: (1) capital is
local, (2) capital intensity varies across industries, and (3) the accumulation of savings
depends on the local composition of industries. If all of these factors are in place,
then local capital channels may be a dynamic agglomeration force in our setting.

However, capital was fairly mobile across regions in Britain during the period we
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study, suggesting that local capital accumulation is unlikely to be behind our results,
though this may have been a more important factor during the earlier first Industrial
Revolution period.

Intermediate Goods and Trade Costs

Next, we discuss the implications of incorporating intermediate goods and trade
costs into the theory. We begin by introducing intermediate inputs while maintaining
the assumption of free trade. We then consider the implications of allowing non-zero
trade costs.

Suppose that each firm uses a basket of intermediate inputs denoted by /.5 in
production, with a production function parameter ¢. Let the set of intermediate
inputs used in production vary across industries, but for simplicity, we assume that
within an industry all firms use these inputs in fixed proportions. Let Z be an input-
output matrix with elements z; such that 7; units of intermediate input to industry
i require /;z; units of output from industry ;j (i.e., the production function for
intermediates is Leontief). Total intermediate demand for the output from industry
J 1is then x’?t =" Iyz;. With costless trade, each industry will face a national
intermediate good input price in each period, which we denote d;,. The resulting firm
optimization problem in period three is,

¢ ppb
max pital'CﬁLoicljﬁHi(éjz‘i IicftRicjft - WctLicjft - qctHicft - ditlic;ﬁ - rictRic_'ft

Ljcfe Ricr

with 1 —al—a2—¢—ﬁ’>0
With free trade, this will yield a regression specification that is very similar to the

one obtained in the main text:
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Thus, under the assumption of free trade across locations, the introduction of in-
termediate inputs will not impact our results because the impact of changing input

prices will be absorbed in the time-varying industry effects.

We can use Eq. 23 to explore the impact of introducing trade costs into the model
in a partial equilibrium way. Allowing non-zero trade costs will affect this equation
in two ways. First, output prices will vary at the local level, so p; will become p;..
Second, intermediate input prices will also vary locally, so d; becomes d;,. With
trade costs, both the input and the output prices faced by firms in industry i can

vary across cities.

To consider the impact of trade costs, suppose for now that we turn off all spillover
channels, so S;.; =0 and,

1
ln(LiCt) - ln(Lict_]) - ¢ ln(dit) - ln(dit_l
1

+  In(pir) — In(pit—1) (24)
1

[v(a2 = 1) — @] In(qer) — In(Get-1)
1

1
+ (@2 = 1) In(ve) —In(v; 1) +Eict

Now, focusing on the input prices side, suppose that there are two cities, A and
B, and that City A has more industry i suppliers than city B so that the cost of
intermediate inputs to industry i is lower in City A than in City B. This implies that

employment in industry 7 will be larger in City A than in City B in some initial period:
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this is static agglomeration a la Krugman (1991). A similar effect can be generated
through output price channels. However, as we roll the model forward, Equation 24
shows that, absent other changes, industry i will not grow faster in City A than in
City B. In the absence of other effects, input-output connections alone cannot act as

a dynamic agglomeration force.

Where input-output connections can generate dynamic agglomeration patterns is
by transmitting the effects of other changes, such as falling transport costs. However,
falling trade costs cannot be a sustained force of dynamic agglomeration since trade
costs are bounded below by zero. Moreover, trade costs were fairly stable over at
least part of the period we study, while urbanization continued apace.*! This pattern
suggests that input-output connections and trade costs can be an important static
agglomeration force, but these forces are unlikely to generate the dynamic agglomer-
ation patters studied here.

In a world of static inter-industry agglomeration forces, the growth in industry i
must be driven by growth in industry j, rather than the level of industry ;j. But this
raises questions about the causes of the initial growth in industry j. Ultimately, a
world of static agglomeration forces is a world of exogenous city-industry growth. In
contrast, dynamic agglomeration offers an explanation for city industry growth, just

as endogenous growth theory offers an explanation for aggregate growth.

4ICrafts & Mulatu (2006) conclude that, “falling transport costs had only weak effects on the
location of industry in the period 1870 to 1911.” Jacks et al. (2008) find a rapid fall in external
trade costs prior to 1880, with a much slower decline thereafter.
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A.2 Data appendix

Table 6: Cities in the primary analysis database

Population Working population Workers in analysis

City in 1851 in 1851 industries in 1851
Bath 54,240 27,623 23,609
Birmingham 232,841 111,992 101,546
Blackburn 46,536 26,211 24,458
Bolton 61,171 31,211 28,885
Bradford 103,778 58,408 55,223
Brighton 69,673 32,949 27,954
Bristol 137,328 64,025 54,962
Derby 40,609 19,299 16,787
Gateshead 25,568 18,058 8,562
Halifax 33,582 18,058 16,488
Huddersfield 30,880 13,922 12,465
Kingston-upon-Hull 84,690 36,983 31,513
Ipswich 32,914 14,660 11,996
Leeds 172,270 83,570 74,959
Leicester 60,496 31,140 28,481
Liverpool 375,955 165,300 142,197
London 2,362,236 1,088,285 930,797
Manchester 401,321 204,688 187,000
Newcastle-upon-Tyne 87,784 38,564 33,271
Northampton 26,657 13,626 12,062
Norwich 68,195 34,114 29,710
Nottingham 57,407 33,967 31,106
Oldham 72,357 38,853 35,958
Portsmouth 72,096 31,345 19,039
Preston 69,542 36,864 33,085
Sheffield 135,310 58,551 53,472
South Shields 28,974 11,114 10,028
Southampton 35,305 14,999 12,215
Stockport 53,835 30,128 27,836
Sunderland 63,897 24,779 21,639
Wolverhampton 49,985 22,727 19,851
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Figure 4: Map showing the location of cities in the analysis database

Weyrmouth
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Table 7: Industries in the primary analysis database with 1851 employment

Manufacturing

Chemicals & drugs 18,514
Clothing, shoes, etc. 328,669
Instruments & jewelry* 31,048
Earthenware & bricks 19,580
Leather & hair goods 26,737
Metal & Machines 167,052
Oil, soap, etc. 12,188
Paper and publishing 42,578
Shipbuilding 14,498
Textiles 315,646
Vehicles 9,021
Wood & furniture 69,648
Food, etc.

Food processing 113,610
Spiritous drinks, etc. 8,179
Tobacconists* 3,224

Services and Professional

Professionals* 40,733
General services 460,885
Merchant, agent, accountant, etc. 58,172
Messenger, porter, etc. 72,155
Shopkeeper, salesmen, etc. 27,232
Transportation services

Railway transport 10,699
Road transport 35,207
Sea & canal transport 66,360
Others industries

Construction 137,056
Mining 24,505
Water & gas services 3,914

Industries marked with a * are available in the database but are not used in the baseline analysis
because they cannot be linked to categories in the 1907 British input-output table.

48



Table 8: Industry agglomeration patterns based on the Ellison & Glaeser index

This table reports industry agglomeration in each year based on the index from Ellison & Glaeser
(1997). This approach adjusts for the size of plants in an industry using an industry Herfindahl
index. We construct these Herfindahl indices using the firm size data reported in the 1851 Census
and apply the same Herfindahl for all years, since firm-size data are not reported in later Censuses.
This may introduce bias for some industries, such as shipbuilding, where evidence suggests that the
average size of firms increased substantially over the study period. Some analysis industries are not
included in this table due to lack of firm size data.
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Table 9: Industry agglomeration patterns excluding London

This table reports industry agglomeration in each year based on the index from Ellison & Glaeser
(1997). This approach adjusts for the size of plants in an industry using an industry Herfindahl
index. We construct these Herfindahl indices using the firm size data reported in the 1851 Census
and apply the same Herfindahl for all years, since firm-size data are not reported in later Censuses.
Some analysis industries are not included in this table due to lack of firm size data.

In addition to the data sets described in the main text, we have collected additional
information on a variety of other industry and city characteristics. The 1851 Census
of Population was particularly detailed, and provides information on firm sizes in each
industry at the national level. From the 1907 input-output table, we have measures
of the share of industry output that is sold directly to households, as well as the share
exported abroad. The 1907 Census of Production provides us with information on
the total wage bill of each industry and the value of output for each industry. = These
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are used to construct, for each industry, estimates of the ratio of labor cost to total
sales and, together with the input-output table, the ratio of intermediate cost to total
sales. Finally, we collect data on the distance between cities (as the crow flies) from

Google Maps, which we will use when considering cross-city effects in Section A.4.5.

Table 10: Summary statistics for the cross-industry spillover terms

Main analysis matrices and industry categories (1851-1911)

Obs. Mean SD Min Max
" =i 10in; In(Lier) 4263 931 321 2.11 21.86
) IOouty In(Liws) 4,263 880  6.26 0.00  42.77
) k=i EMP; In(Lger) 4,263 100.8  42.51 -92.52 191.50
) b
k=i OCCri In(Ler) 4,263 3625 2570 -1.10 - 111.10
Alternative matrices and aggregated industry categories (1851-1911)
Obs. Mean SD Min Max
"~ 10in1841 4 In(Lier) 2,232 287 285 0.00 12.10
) i— i 1O0ut1841; In(Lyer) 2,232 3.98 3.88 0.00 11.77
) k=i EMPi In(Lger) 2,232 50.22 2498 -29.45 95.33
),
=i OCCri In(Lier) 2,232 2490  16.60 -0.66 67.22
Cross-city connection measures (1861-1911)
Obs. Mean SD Min Max
" 10in” o dye x In(Lige) 3549 23756 72.05 6598  389.92
)’k: ; IOouty; ) "= e dje ¥ In(Lygy) 3,549 223.59 152.47 0.00 741.70
b ,-EMPk,->’_,- —edje ¥ In(Lisy) 3,549 257020 98725 -1,606.76 3,417.66
) ocC, e die % In(Lige) 3,549 92617 631.58  -19.62 1,995.84
MP,, 3,549 15.70 0.24 14.76 16.07

——NOTe—W<e TCPOTT CTOSS=CITy SUNTaTy STatstes Tor T80 =TT T because we Oy Teport i

strumented cross-city regression results in the main text, which means that 1851 is used
only to construct lagged values. For the others, we report summary statistics using the full
1851-1911 period since we report both OLS and instrumented results.
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A.3 Empirical approach appendix
A.3.1 Monte Carlo simulations

We use Monte Carlo simulations to assess how well our estimation strategy performs
in datasets displaying the size and characteristics of our data. The basic idea is to
generate datasets that mimic our real data, but obtained from a data generating pro-
cess (DGP) with known parameter values. We then apply our estimation strategy to
these placebo data sets, recover parameter estimates, and compare them to the esti-
mates obtained in the true data. This allows us to assess the ability of our estimation

strategy to obtain unbiased results and accurate confidence intervals.

We begin by estimating our baseline regression specification, Eq. 18, in order to
obtain a set of industry-year effects (gBl-,), city-year (9ct) effects, and estimated
residuals &.;,. These ingredients will be used to simulate new datasets in which the
city-year and industry-year effects are held constant at the estimated values, and the
error terms are drawn from a multivariate Normal distribution whose parameters are

computed using the estimated residuals.

Step 1 — constructing the simulated error term

We want to generate a simulated error vector that displays correlation within the
city-year (CY), industry-year (IY) and city-industry (CI) dimensions but is uncor-
related across these dimensions. In other words, we need to draw entire vectors of
errors &.; from a multivariate distribution whose covariance matrix  has zeros if two
observations do not share any cluster, and non-zeros if they share at least a cluster.
We follow Cameron et al. (2011) and construct such multi-clustered covariance matrix

Q as the sum of four single-clustered covariance matrices.*?

Q= QCY+ QIY+ QCI _ 2QCIT

42Following Cameron et al. (2011)’s notation, with three non-nested dimensions of clustering
(denoted by A, B, C) the correct formula to compute a multi-clustered covariance matrix is QAB5C =
QA+ QB+ QC_QANC _QANB _(BNC4 OANBNC where, for instance, the entries of Q4 are non-zero
if two observations share the same cluster along a single dimension A, while the entries of Q4"5
are non-zero if two observations share the same cluster defined by the intersection of A and B. In
our application, notice that Q€Y NIV = QCYNCl = IY NCl—= (CIT 'therefore the formula above
collapses to four distinct terms only.
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Notice that if we sort the observations by a given dimension of clustering x,
Q" has a block diagonal structure. For example, Q¢ consists of blocks of zeros
if the corresponding observations are not in the same city-year cluster, and blocks
along the diagonal with elements potentially different from zero if the corresponding
observations are from the same city-year pair. We denoted these non-zero submatrices
by WY and assume that they are identical across clusters. Therefore the typical
element of WY is 6¥ = cov(eziz, €7) /= 0.

We use the estimated residuals &, from the baseline specification to construct
the elements of each submatrix W*. For instance, taking any two industries i and

>

J. we set 67 = 21" oy 8ilfeje, where #CY is the number of different city-year
pairs. We compute the elements of Q'Y and Q in the same way. We take a different

approach to compute the elements of Q“’? since each cluster has only one observation,
i.e. there’s a single observation for each triplet city-industry-year. All the diagonal

A 17> ~

clry : : ~cit —
elements of Q are set to the mean squared residual, i.e. 6" =6 = v &

where N is the number of observations. The off-diagonal elements of Q" are zeros.*

We draw 1,000 vectors of error terms from the multivariate distribution N (0, )
and rescale each vector so that it has exactly the same mean (zero) and variance as
the original residuals. The result of this procedure is a simulated error term &M
that displays correlated errors along the city-year, industry-year and city-industry

dimensions with a variance matching that of the original estimated error term.

Part 2: Simulating the data

The next step in our procedure involves simulating a new set of data with the same
dimensions as the original data and with known within-industry and cross-industry

spillover parameters.

In order to generate a simulated growth rate for the first period we begin with the
level of initial city-industry employment from the data and use Eq. 18 to compute a
simulated employment growth rate for each city-industry. So, for example, if we let
S1=0.05 and all other £ terms and 7; terms to zero then growth rate of employment

in city ¢ and industry i is:

43 As noted in Cameron et al. (2011), multi-clustered covariance matrices are not guaranteed to be
positive semidefinite. When that happens, as in our case, such Q cannot be used by a random number
generator. Our solution is to replace Q with the nearest positive semidefinite matrix computed using
Matlab routine nearestSPD.
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Gt =0.05 " 10ing In(Lico) + o + Oy + 271771 (25)
k=i
where /Oiny; is the actual input-output weight observed in the data. The shifters
(;i, and 9ct are kept constant across simulations at the values estimated in the initial
regression.

We use this simulated growth rate to obtain L., the level of city-industry em-
ployment in the following period, which is then fed back into Eq. 25 to obtain L.,
and so on. We repeat the process until we generate a level of employment for each
city-industry-year triplet observed in the data. This procedure delivers a simulated
dataset that by construction has the desired clustered error structure and the same

number of observations as the original data.

Step 3: Results
We follow this procedure to generate 1,000 datasets that look like the true data,

but that are generated using a data generating process with known z; and f param-
eters. We apply our estimation strategy (as in Table 2 Column 6) to each of these
data sets and obtain a distribution of estimated 7 and  parameters.

Figure 5 displays the mean, 90% and 95% confidence intervals for the distribution
of estimated parameters when £ is set to 0.05 and all the other spillover parameters
are set to zero. As an example, we also plot the distribution of estimated coefficients
for /Oin and wtnl. We can see that our estimators are asymptotically normal and

unbiased.

We also perform a second Monte Carlo exercise in which we set all £ and 7 param-
eters to zero and then compare the distribution of estimated coefficients coming out
of this counterfactual DGP with the estimates obtained using the real dataset. This
allows us to asses the likelihood of observing the real dataset and the corresponding
estimates under the null hypothesis that all parameters are zeros. This method pro-
vides us with an alternative way to do hypothesis testing that does not rely on our

multi-dimensional clustered standard errors.

Figure 6 plots the distribution of estimated 1Oin parameters obtained using the
1000 simulated data sets, as well as the estimate obtained from the true data. These

results suggests that obtaining the point estimate for /Oin ot 0.0622 that we got from
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the true data (Table 2, Column 6) is extremely unlikely when the true parameter value
is zero. The implied p-value is 0.000 and the coefficient is significantly different from

zero at the 1% level.

Table 11 presents the similar results for all the other coefficients of interest and
confirms the significance levels of our baseline results from Column 6 of Table 2. This
is reassuring because one may wonder whether our dataset is sufficiently large to con-
sistently estimate all the parameters of interest, especially given that the observations
are potentially correlated across multiple dimensions.

Discussion

These monte carlo results can help us assess how well our approach performs on
simulated data sets sharing the same size and variance as the data used in our main
analysis. However, this procedure comes with obvious limitations. In particular,
we are assuming that the model is correctly specified and that the error terms are
clustered in a particular way. Thus, this simulation cannot be used to assess how well
our procedure performs under alternative data generating processes or when standard

errors display alternative clustering patterns.
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Figure 5: Simulated results when f; = 0.05 and all other spillover parameters are
Zero
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Table 11: Simulated results with all parameters are set to zero vs. parameter esti-
mates from true data

Simulated Data True Data
Variable Mean Std. Dev. Coef. p-value

EMP .000 .001 .002 .198
I0in .000 012 .062 .000
IOout .000 011 -018  .096
oCC .000 .002 .007 .002
winl -.002 .023 -.094  .000
wtnl0 -.001 018 -.124  .000
winll -.001 017 .041 .016
witnl2 .000 024 -026 274
winl3 -.002 022 -.074  .001
winl4 -.003 027 -.102  .000
winl5 -.002 022 -.04 .068
witnl6 -.001 024 -069  .004
witnl7 -.001 019 -066  .001
winl8 .000 .013 -.032  .016
winl9 -.001 017 -.028  .092
witn2 -.001 .033 -.01 752
witn20 -.001 .023 -.005 .84
win21 -.001 .02 -.061 .002
win22 -.003 028 -.142  .000
win23 -.001 018 -.046 011
wtn3 -.003 021 -032 123
wtn4 -.001 018 -.089  .000
witn5 -.001 021 -.062  .003
winb -.003 .034 -.078  .023
win7 .000 021 -.058  .007
witn8 .000 017 -.004 818
wtn9 .000 022 -.071 .001

For each of the key explanatory variables, the first two columns of this table present the mean and
standard deviation of the distribution of coefficient estimates obtained from applying our estimation
strategy to 1000 simulated datasets where the data have been generated with all spillover parameter
values set to zero. Column 3 presents the coefficients estimated using the true data (as in Table 2,
Column 6). Column 4 presents the p-value implied by comparing the coefficients estimated using
the true data to the distribution of coefficient estimates obtained from the simulated data.
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A.3.2 KP test appendix

The standard errors in all of our main regressions are clustered along multiple dimen-
sions. When using 2sls regressions, it is useful to be able to calculate the Kleibergen
& Paap (20006) test statistics for under- and weak-identification using the appropri-
ately clustered covariance matrix. The KP statistics can easily be computed using
existing Stata routines, but only for up to two non-nested dimensions of clustering
(Kleibergen (2010)). None of these routines can handle a higher number of clusters so
we developed our own package, which we will make available to the benefit of other

researchers.

Our strategy builds on Thompson (2011) and Cameron et al. (2011) to compute
a multi-clustered covariance of the orthogonality condition for any number of clus-
ters. We then use a modified version of the Stata program ranktest to compute the
appropriate KP statistics based on this covariance matrix. It can be verified that our
program exactly reproduces the rk statistic (under-identification) and Wald statistic
computed by ranktest in the case of two clusters. The weak-identification test statis-
tic is then computed by transforming the Wald statistic into an F statistic. Notice
that the value of our F statistic does not exactly match the one computed by ivreg2

due to the very small differences in the small sample adjustment.

A.4 Results appendix
A.4.1 Robustness of results to dropping cities or industries

Figure 7 presents histograms of t-statistics for each cross-industry term obtained
from running regressions equivalent to Column 6 of Table 2, where in each regression
a different city is dropped from the dataset. This allows us to assess the extent to
which our results are robust to changes in the set of cities included in the analysis.
These results indicate that our estimates are not sensitive to dropping individual
cities from the analysis database.
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Figure 7: Robustness to dropping one city at a time — distribution of t-statistics
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Figure 8 presents histograms of t-statistics for each cross-industry term obtained
from running regressions equivalent to Column 6 of Table 2, where in each regression
a different industry is dropped from the dataset. This allows us to assess the extent
to which our results are robust to changes in the set of industries included in the
analysis. We can see that in general our estimated coefficients are not sensitive to
dropping individual industries. However, this does not apply when looking at the
IO out coefficient. The top-right graph shows that when we drop shipbuilding from
the data, the IO out coefficient changes substantially. In particular, the estimated
coefficient changes from negative and occasionally statistically significant to positive
and not statistically significant. This suggests that the negative coefficient estimated
on the 10 out coefficient is driven entirely by the Shipbuilding industry. This is an

unusual industry because presumably it can only operate in coastal cities or those
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with access to a major navigable river. Thus, the IO out results obtained when
dropping this industry seem more reasonable. These results suggest that in general
the impact of local customers is weakly positive.

Overall, the results in Figure 8 indicate that our estimates are much more sen-
sitive to dropping industries than they are to dropping cities. This suggests that

heterogeneity across industries is more important than heterogeneity across cities.

Figure 8: Robustness to dropping one industry at a time — distribution of t-statistics

10in results I0out results

EMP results OCC results

A.4.2 Heterogeneous effects

In this section we look at heterogeneity in the pattern of cross-industry and within-
industry effects across different industries. We begin by considering heterogeneous

cross-industry effects. Specifically, we run two alternative versions of Equation 18,
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6 In(Lict+1) = TisIn(Lict) + Bi - CONNEC Tkiln(Lket) + Oct + Xit + Cict (26)
k/=t

6 In(Li/=k ct+1) = TiiIn(Lict) + ,d( CONNECTkiIn(Lkct) + Oct + Xit + €ict 27)

where CONNECTy; is one of our four measures of cross-industry connections. Equa-
tion 26 allows us to estimate industry-specific coefficients S describing how much
each industry i benefits from cross-industry connections. This specification can be
estimated using the same approach as was used for our baseline regressions. Us-
ing Equation 27, we estimate industry-specific coefficients S* that reflect the extent
to which industry k& generates spillovers that benefit other industries. Estimating
this value requires a different approach to avoid conflating the within and between
impact of industry k& when estimating S*. Specifically, we run separate regressions
corresponding to Equation 27 for each industry k. In each of these regressions, only
employment in industry k (interacted with a cross-industry connection measure) is
included as an explanatory variable and observations from industry 4 are not included
in the dependent variable.

Once the industry-specific ' and S* terms are estimated, we compare them to
available measures of industry characteristics: firm size in each industry, the share
of output exported, the share of output sold to households, the industry labor cost
share, and the industry intermediate cost share. In each case we run a simple uni-
variate regression where the dependent variable is the estimated industry-specific
cross-industry spillover coefficient and the independent variable is one of the industry
characteristics. Univariate regressions are used because we are working with a rela-
tively small number of observations. These results can provide suggestive evidence
about the characteristics of industries that produce or benefit from different types of
cross-industry spillovers, but because of the small sample size we will not be able to

draw any strong conclusions.

Table 12 describes the characteristics of industries that benefit from cross-industry
connections. In rows 1-2, we see evidence that small firm size in an industry is asso-
ciated with more cross-industry spillover benefits, but this pattern is not statistically
significant at standard confidence levels. = The only strong result coming out of this
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table is that industries that benefit from connections to other local industries with
similar labor pools tend to have a larger labor cost share relative to overall industry
sales, as well as a smaller intermediate cost share. This seems like a very reasonable
result which provides some additional confidence that the estimates we have obtained

are reasonable.

Table 12: Features of industries that benefit from each type of cross-industry spillover

Coefficients from univariate regressions
DV: Estimated industry-specific 8¢ coefficient
Spillovers channel: I0-in 10-out EMP OCC
Average firm size -0.210 -0.902 -0.0353 -0.209
(0.319)  (0.559)  (0.0350) (1.122)

Median worker’s firm size -0.0179 -0.108 -0.00289 -0.0441
(0.0377) (0.0651) (0.00417) (0.131)

Share of industry output 0.0185 -0.122 -0.0163 -0.313
exported abroad (0.0982) (0.178) (0.0114) (0.333)
Share of industry output 0.0300 0.121 0.00746 0.170
sold to households (0.0443) (0.0864) (0.00519) (0.150)
Labor cost/output ratio -0.137 -0.185 -0.00769 0.426**

(0.147)  (0.280)  (0.0100) (0.191)

Intermediate cost/output ratio  0.0196 0.0819  -0.000385 -0.373%%*
(0.109)  (0.194) (0.00737) (0.125)

Estimated coefticients from univariate regressions. Standard errors in parentheses. *** p<0.01,
** p<(0.05, * p<0.1. The dependent variable in each regression is the estimated B’ coefficient
from Eq. 26. Firm size data comes from the 1851 Census of Population. The share of industry
output exported or sold to households is from the 1907 input-output table. The labor cost share
is constructed from industry wage bills from the 1907 Census of Manufactures. The intermediate
cost share is based on the 1907 input-output table. We do not report robust standard errors
because these generate smaller confidence intervals, probably due to small-sample bias. We have
also explored regressions in which we weight results by the inverse of the standard error of each
estimated within-industry coefficient in order to account for the precision of those estimates and
these deliver similar results.

Table 13 describes the characteristics of industries that produce cross-industry
connections. These results also suggest that industries with smaller firm sizes produce
more beneficial cross-industry spillovers, but again, these results are not statistically
significant. ~ As before, the only clear relationship that we observe is that industries
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with a greater labor cost share (and smaller intermediate cost share) relative to overall

sales produce more cross-industry benefits to occupationally similar industries.

Table 13: Features of industries that produce each type of cross-industry spillover

Coefficients from univariate regressions
DV: Estimated industry-specific 8% coefficient

Spillovers channel: [0-in  IO-out EMP OoCC
Average firm size -1.496  -3.899 0.0487 -1.022
(1.239) (6.452) (0.174) (2.133)
Median worker’s firm size -0.163  -0.626  0.00115 -0.149
(0.147) (0.752) (0.0206) (0.250)
Share of industry output 0.0742  -0.797  0.00417 -0.341
exported abroad (0.407) (1.994) (0.0539) (0.648)
Share of industry output 0.149  0.0470 -0.0169 0.418
sold to households (0.201) (0.905) (0.0241) (0.280)
Labor cost/output ratio -0.324 0.651 -0.0251 0.983%*
(0.625) (3.212) (0.0440) (0.524)
Intermediate cost/output ratio -0.197 -0.0637  0.0142 -0.870%*
(0.420) (2.261) (0.0311) (0.338)

Estimated coefficients from univariate regressions. The dependent variable in each regression is
the estimated B coefficient from Eq. 27. Standard errors in parentheses. *** p<0.01, ** p<0.05,
* p<0.1. Firm size data comes from the 1851 Census of Population. The share of industry
output exported or sold to households is from the 1907 input-output table. The labor cost share
is constructed from industry wage bills from the 1907 Census of Manufactures. The intermediate
cost share is based on the 1907 input-output table. We do not report robust standard errors
because these generate smaller confidence intervals, probably due to small-sample bias. We have
also explored regressions in which we weight results by the inverse of the standard error of each
estimated within-industry coefficient in order to account for the precision of those estimates and
these deliver similar results.

Next, we undertake a similar exercise with our estimated within-industry coeffi-
cients. In Table 14 we consider some of the industry characteristics that may be re-
lated to the range of different within-industry spillover estimates we observe. Columns
1-2 focus on the role of firm size using two different measures. We observe a posi-
tive relationship between firm size in an industry and the strength of within-industry
spillovers, but this results is not statistically significant due to the small number of
available observations. There is also weak evidence that more labor intensive indus-

tries benefit more from within-industry spillovers.
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Table 14: Features of industries that benefit from within-industry spillovers

DV: Estimated industry-specific within-industry spillover coefficients

Average firm size 0.289
(0.196)
Median worker’s firm size 0.0253
(0.0236)
Exports share of industry output 0.0428
(0.0708)
Households share ofindustry output -0.0384
(0.0314)
Labor cost/output ratio 0.136
(0.0983)
Intermediate cost/output ratio -0.0115
(0.0755)
Observations 20 20 23 23 16 16
R-squared 0.107 0.060 0.017 0.066 0.121 0.002

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The number of observations
varies because the explanatory variables are drawn from different sources and are not available for
all industries. The within coefficients come from the specification used in Column 6 of Table 2.
Firm size data comes from the 1851 Census of Population. The export’s and household’s share
of industry output come from the input-output table. Total labor cost and total output values
come from the 1907 Census of Production. Intermediate cost is constructed based on data from
the 1907 Input-Output matrix. We do not report robust standard errors because these generate
smaller confidence intervals, probably due to small-sample bias. We have also explored regressions
in which we weight results by the inverse of the standard error of each estimated within-industry
coefficient in order to account for the precision of those estimates and these deliver similar results.

A.4.3 Robustness: Alternative functional forms

In this table we replace the logarithms on the right-hand side of the estimating equa-
tion with plausible alternative functional forms based on either the second root or
fifth root. These results show that adjusting the functional form in this way has little

impact on the estimated results.
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Table 15: Regression results with alternative functional forms

FF: Square root Fifth root
(D 2) (3) 4) 4) (6)
I0in 0.0017***  0.0016***  0.0016*** 0.0779***  (.065]1*** 0.0659%%**
(0.0005) (0.0005) (0.0005) (0.0205) (0.0187) (0.0190)
I0out -0.0003 -0.0004 -0.0004 -0.0098 -0.0149 -0.0173
(0.0004) (0.0004) (0.0004) (0.0126) (0.0125) (0.0127)
EMP -0.0000 0.0000 0.0000 -0.0001 0.0022 0.0019
(0.0001) (0.0000) (0.0001) (0.0021) (0.0015) (0.0017)
ocCcC 0.0003*%*%* 0.0003* 0.0003**  0.0108***  (0.0085** 0.0088**
(0.0001) (0.0001) (0.0001) (0.0036) (0.0040) (0.0040)
Observations 4,263 3,554 3,554 4,263 3,554 3,554
Estimation ols 2sls 2sls ols 2sls 2sls
Instrumented none win wtn-btn none wtn wtn-btn
KP under 20.74 20.92 26.73 28.71
KP weak 103.9 62.81 79.44 49.83

Multi-level clustered standard errors by city-industry, city-year, and industry-year in paren-
thesis. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. A full set of industry-specific
within terms, industry-year and city-year effects are included in all regressions but not dis-
played. Regressions in Columns 2 and 4 instrument the within terms with lagged values.
Regressions in Columns 3 and 5 instrument both the within and between terms with lagged
values. Acronyms: wtn = within, btn = between. “KP under” denotes the test statistic for
the Lagrange Multiplier underidentification test based on Kleibergen & Paap (2006). “KP
weak” denotes the test statistic for a weak instruments test based on the Kleibergen-Paap
Wald statistic.

A.4.4 Robustness: Alternative connections matrices

Next, we revisit the analysis using some alternative measures of inter-industry con-
nections. In particular, we use an alternative matrix of input-output connections
constructed by Horrell et al. (1994) for Britain in 1841. Generating results with
this alternative matrix, which comes from before the study period, can help address
concerns that the results we find are dependent on the specific set of matrices we
consider or are due to a process of endogenous inter-industry connection formation.
The cost of using this matrix is that we are forced to work with a smaller set of 12

more aggregated industry categories.**

Because we are now working with a smaller number of industry categories, we focus

4The industry categories are: “Mining & quarrying,” “Food, drink & tobacco”, “Metals & Ma-
chinery,” “QOils, chemicals & drugs,” “Textiles, clothing & leather goods,” “Earthenware & bricks,
“Other manufactured goods,” “Construction,” “Gas & water,” “Transportation,” “Distribution,”
and “All otherservices.”

2
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on regressions that incorporate one spillover channel at a time. Table 16 describes
the results. As in the main results, we observe positive effects occurring through the
I0in channel and these results are generally statistically significant. There is also
evidence that industries may have benefited from the presence of local buyers, but
this result is clearly sensitive to the underlying set of industries used, so it should be
interpreted with some caution. There is also some evidence of benefits through the

presence of occupationally similar local industries.

Table 16: Alternative matrix regressions with one channel at a time

(D (2) 3) “ 4) (6)

10in1841 0.0490***  0.0346**  0.0421**

(0.0134) (0.0152)  (0.0164)
100ut1841 0.0383***  (0,0555%***  (.0570%**

(0.0141) (0.0151) (0.0152)
Observations 2,232 1,860 1,860 2,232 1,860 1,860
Estimation ols 2sls 2sls ols 2sls 2sls
Instrumented none wtn witn-btn none wtn wtn-btn
KP under id. 326.29 263.61 351.47 297.76
KP weak id. 292.93 179.49 366.68 239.76
@) (8) &) (10) (11) (12)

EMP 0.0028 0.0050***  0.0051**

(0.0019) (0.0019)  (0.0020)
ocCcC 0.0058* 0.0049 0.0048

(0.0035) (0.0041) (0.0041)

Observations 2,232 1,860 1,860 2,232 1,860 1,860
Estimation ols 2sls 2sls ols 2sls 2sls
Instrumented none wtn wtn-btn none witn wtn-btn
KP under id. 493.03 44587 301.94 308.52
KP weak id. 494.71 391.98 349.01 262.24

Multi-level clustered standard errors by city-industry, city-year, and industry-year in parenthesis. ***
p<0.01, ** p<0.05, * p<0.1. A full set of within regressors, city-time and industry-time effects are in-
cluded in all regressions but not displayed. 2SLS regressions use lagged instruments. Note that the number
of observations falls for the instrumented regressions because the instruments require a lagged employment
term. Thus, data from 1851 are not available for these regressions. Acronyms: wtn = within, btn =
between. “KP under id.” denotes the test statistic for the Lagrange Multiplier underidentification test
based on Kleibergen & Paap (2006). “KP weak id.” denotes the test statistic for a weak instruments test
based on the Kleibergen-Paap Wald statistic.
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A.4.5 Robustness: Cross-city effects

There is substantial variation in the proximity of cities in our database to other nearby
cities. Some cities, particularly those in Lancashire, West Yorkshire, and the North
Midlands, are located in close proximity to a number of other nearby cities. Others,
such as Norwich, Hull, and Portsmouth are relatively more isolated. In this section,
we extend our analysis to consider the possibility that city-industry growth may also
be affected by forces due to other nearby cities.

We consider two potential channels for cross-city effects. First, industries may
benefit from proximity to consumers in nearby cities. This market potential effect has
been suggested by Hanson (2005), who finds that regional demand linkages play an
important role in generating spatial agglomeration using modern U.S. data. Second,
industries may benefit from spillovers from other industries in nearby towns, through
any of the channels that we have identified. We analyze these effects using the more
detailed industry categories from Section 5.

We begin our analysis by collecting data on the distance (as the crow flies) between
each of the cities in our database, which we call distance;;. Using these, we construct
a measure for the remoteness of one city from another d;; = exp(—distance; ).*> Our

measures of market potential for each city is then,

MP,=1n - POP;*d, .

Jj=c

where POP);1s the population of city j. This differs slightly from Hanson’s approach,
which uses income in a city instead of population, due to the fact that income at the
city level is not available for the period we study.

We also want to measure the potential for cross-industry spillovers occurring across
cities. We measure proximity to an industry i in other cities as the distance-weighted
sum of log employment in that industry across all other cities. Our full regression

specification, including both cross-city market potential and spillover effects, is then,

6 In(Lict+1) = Tiiln(Lico)

“This distance weighting measure is motivated by Hanson (2005). We have also explored using
dij= 1/distance;; as the distance weighting measure and this delivers similar results.
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+ B I0inkiIn(Lie)+B>  100uUtii In(Lice)
K/ K/

+ By EMPriln(Lkee) + Ba OCCriln(Licr)
k/ k 1

+ Bs' I0inki  djexIn(Lije) +Bs 1Ooutei  dje* In(Lxje)
Kl ji= K/ j e

+ B EMPri djexIn(Lije) +Bs'  OCCri  dje In(Lije)
K ji= K. ji=
K ji= K ji=

+  BoMPct+ log(WORKPpopct) + 0c + Xit + Eict.

One difference between this and our baseline specification is that we now include
city fixed effects (6.) in place of city-year effects because city-year effects would be
perfectly correlated with the market potential measure. To help deal with city-size
effects, we also include the log of WORKpop.., the working population of city ¢ in
period ¢. To simplify the exposition and in analogy with the previous section, we will
refer to the cross-city term -, [Oiny; . djc * In(Ly;) as IOin * d, and similarly
for the other cross-city terms /Qout * d, EMP * d,and OCC x* d.

The results generated using this specification are shown in Table 17. The first
thing to take away from this table is that our baseline results are essentially unchanged
when we include the additional cross-city terms. The city employment term in the
fifth column reflects the negative growth impact of city size. The coefficients on the

market potential measure is always positive but not statistically significant.
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Table 17: Regression results with cross-city variables

Q) P 3)
I0in 0.0571%%%  0.0604%*%*  (.0586%**
(0.0144)  (0.0154)  (0.0166)
I0out -0.0248%%  .0.0252%*  -0.0257**
(0.0109)  (0.0108)  (0.0111)

EMP -0.0027 -0.0029 -0.0029
(0.0018)  (0.0018)  (0.0018)

ocC 0.0064* 0.0062* 0.0061*

(0.0033) (0.0034) (0.0034)
City employment  -0.3377***  -(.3205%**  _(.332]***
(0.0762) (0.0753) (0.0767)

Market Potential 0.1592 0.1176
(0.1611) (0.2631)
10in*dist 0.0012 0.0004
(0.0017) (0.0024)
IOout*dist -0.0008 -0.0007
(0.0010) (0.0010)
EMP*dist 0.0002 0.0001
(0.0001) (0.0001)
OCC*dist -0.0001 -0.0001
(0.0002) (0.0002)
Observations 3,549 3,549 3,549
KP under 19.34 20.79 19.38
KP weak 2.07 2.3 2.07

Multi-level clustered standard errors by city-industry, city-year, and industry-year in parenthesis.
Significance levels: *** p<0.01, ** p<0.05, * p<0.1. A full set of within regressors, city-time and
industry-time effects are included in all regressions but not displayed. All regressions instrument
the within and between regressors with lagged instruments. Acronyms: wtn = within, btn =
between. “KP under” denotes the test statistic for the Lagrange Multiplier underidentification test
based on Kleibergen & Paap (2006). “KP weak™ denotes the test statistic for a weak instruments
test based on the Kleibergen-Paap Wald statistic.

The results do not provide statistically significant evidence that cross-city spillovers
matter through any of the channels that we measure. However, these results are im-
precisely measured. The coefficients estimated on the /Oin * dist term suggest that
a one standard deviation increase in the presence of suppliers in other nearby cities
could increase city-industry growth by 6.1-18.3%. The coefficients on the EMP term
are consistent with effects of a similar magnitude. Thus, we should not rule out im-
portant cross-city effects based on these results. However, it is clear that omitted
cross-city effects are not driving our findings regarding the importance of within-city
cross-industry agglomeration forces.
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A.4.6 Additional results for the city-size effects

We may be concerned that the results described in Table 4 are driven in part by the
inclusion of industry-time effects in the regressions used to obtain the 6., terms. One

way to assess this is to estimate alternative city-time effects from,

6 In(Lictr1) = 65 + Xit + @it (28)
and then estimate,
QSE =co+ c1 In(WORKpop_.)+ for. (29)

Because the only difference between the specification in Equation 18 and that in
Equation 28 is the inclusion of the within and cross-industry agglomeration terms,
we can be sure that any differences between the estimated 6. terms and the HZE

terms are due to these agglomeration forces.

The results in Table 18 mirror those shown in Table 4 except that the relationship
between city size and the estimated 6., coefficients are now compared against the
relationship between city size and the estimated &% _, coefficients from Eq. 29. In
essence, this comparison is ensuring that the convergence results we obtain are not
driven by the inclusion of industry-year effects in the regressions. We can see that
the results in Table 18 are very similar to the results in Table 4, which suggests that
the inclusion of industry-year effects is not playing an important role in generating
our results.
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Table 18: Measuring the aggregate strength of the agglomeration forces against an
estimated baseline

Column 1 presents the a; coefficients from estimating Equation 19 for each decade (cross-sectional
regressions). Column 2 presents the decadal divergence rates implied by these coefficients. Col-
umn 3 presents the €; coefficients from estimating Equation 29 and Column 4 presents the decadal
divergence rates implied by these coefficients. Column 5 gives the aggregate strength of the diver-
gence force represented by the agglomeration economies, which is equal to the difference between
the decadal convergence coefficients. The results in the top panel are based on city-time effects
estimated from unweighted regressions while the results in the bottom panel are based on city-time
effects estimated using weighted regressions based on city-industry employment in  1851.
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